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Highlights 
● The model provided by Darlymple (1974) for wave-current interaction shows stability issues. This study 

provides a more stable numerical algorithm for the interaction of regular waves with a linear shear current. 
● Compared with other numerical and experimental results, the accuracy of the proposed solution by the 

stream function theory for combined regular waves and linear shear currents is relatively high. 
1 Introduction 

There are various forms of currents in the oceans. In nearshore areas, the interaction between waves and currents 
poses a threat to marine structures (Wan et al., 2024). Therefore, the study of wave-current coupling is of great 
significance. This study focuses on the interaction between two-dimensional regular waves and linear shear currents. In 
terms of physical experiments, Swan (1990) measured the waveform and velocity field of the interaction between 
regular waves and linear shear currents. Thomas (1990) studied the importance of vorticity in wave-current interaction. 

Numerical simulations are typical approaches to study wave-current interaction. Darlymple (1974) proposed the 
waves and linear shear currents stream function theory (W&LSC stream function theory), and solved it based on the 
Lagrange multiplier approach and made the computer program openly available (https://www.ce.jhu.edu/dalrymple/). 
Zhao et al. (2023) proposed a new method for wave-current generation and absorption in numerical tanks using the 
High Level Green Naghdi (HLGN) model. Fang et al. (2023) proposed fifth-order Stokes wave solution to study fluid 
particle trajectories under wave-current interaction condition. 

The model provided by Darlymple (1974) is unstable and does not converge under strong current conditions (see 
section 4.2). Therefore, the motivations of this paper are: 1. Propose a stable algorithm applicable to W&LSC stream 
function theory; 2. Verify the accuracy of modified stream function theory and algorithm. This paper is organized as 
follows: In section 2, an outline of the W&LSC stream function theory is provided; The new algorithm proposed in this 
study was introduced in section 3; The numerical results are presented in section 4. Finally, the conclusions were 
summarized. 
2 Wave and linear shear current stream function theory 

Darlymple (1974) consider the interaction between regular waves and linear shear currents in two dimensions. 
Assuming that the fluid is inviscid and incompressible, and that the vorticity is constant. The origin of the Cartesian 
coordinate system Oxy is on the still-water surface and moves forward along the x-axis with the wave velocity. The 
positive direction of the x-axis is horizontally to the right, and the positive direction of the y-axis is vertically upward, as 
shown in Figure 1. ( )y x  is the free surface, measured from the still-water level. The constant water depth is 

represented by h. The current velocity on the seabed is denoted as 0U . 

 
Figure 1 Sketch of the interaction between a regular wave and linear shear current 

For an incompressible fluid, the stream function is defined as 
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where u and v represent the horizontal and vertical velocity components of wave-current interaction in the translational 
coordinate system, respectively. Dalrymple (1974) proposed the following governing equation and boundary conditions 
based on the stream function theory: 
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where 0 is the vorticity, which is constant under linear the shear current condition. Q and R are also constant. 

Darlymple (1974) assumed the following form for the stream function  
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where L is the wavelength and T is the period. ( 1, 2, , )jB j N   is the constant coefficient to be calculated for 

specific wave-current coupling problem. Substituting equation (3) into equation (2) gives 
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3 Numerical algorithm 
Darlymple (1974) solved the wave-current coupling problem by use of the Lagrange multiplier approach and 

published the developed Fortran program. However, using this approach, the program shows some stability issues. 
Calculations sometimes fail to converge (see section 4.2). Therefore, in this study, an alternative solution based on the 
Newton iteration method is used to solve the wave-current interaction equations. 

The procedure is as follows: (i) Take half of the wavelength at which the wave current interaction is stable as the 
calculation length; (ii) Discretize it into N+1 equidistant points to obtain 0 1 2, , , , Nx x x x , where  / 2ix i x iL N    

( 0,1, ,i N  ); (iii) Define the wave profile as 0 1 2, , , , N    , where ( 0x , 0 ) is the point at the wave crest and 

( Nx , N ) is the point at the wave trough. Then equation (4) is written as 
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Following this procedure, there are 2N+2 equations with 2N+4 unknowns, denoted as 0 1 2, , , , N    , 1 2, , , NB B B , L , 

R, Q. Therefore, two additional equations are required to close the system of equations. 

There is no change in the mean water level (Darlymple, 1974). That is, 2
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Furthermore, the relationship between the wave crest and wave trough leads to 

0 ,N H    (7) 
where H is the wave height. The system of equations (5)-(7) consists of 2N+4 equations and 2N+4 unknowns. The 
closed system of equations can be solved using Newton's iterative method. 
4 Numerical results  
4.1 Case1: Zhao et al. (2023) 

The interaction between regular waves and opposing linear shear current is studied using the model provided by 
Darlymple (1974) and the new algorithm proposed in this paper. Zhao et al. (2023) analyzed the coupling between 
regular waves and opposing current with cu = 0.2y0.1m/s by use of the HLGN model. The water depth is set to 

h=0.5m. The wave height is H=0.07655m, and the period is T=1.325s. The wave profile and velocity field of the stable 
solution can be obtained using the Newton iteration method in this study, as shown in Figure 2. We use N=50 in the 
calculations, and the same applies to the subsequent calculations. 
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                  (a) Wave profile                           (b) Horizontal velocity under the wave crest 
Figure 2 Regular wave interacting with a linear shear current cu = 0.2y0.1m/s (H=0.07655m，h=0.5m，T=1.325s) 

The W&LSC stream function theory1 in Figure 2 represents the results calculated using the model provided by 
Darlymple (1974). The tolerance setting in the model is 0.01. This study found that the calculation accuracy is low for 
this case. Therefore, we reduce the tolerance to 0.00001 to modify the model. The result obtained is presented as 
W&LSC stream function theory 2. There is a significant difference between the results before and after modifying the 
model. The W&LSC stream function theory 2 is an accurate result of the model provided by Darlymple (1974). The 
calculation results of W&LSC stream function theory 2 are completely consistent with the algorithm presented in this 
paper. This indicates that the new algorithm proposed in this study can accurately simulate the waveform and velocity 
field of wave-current coupling problems. In addition, Figure 2 (a) shows that the waveform obtained by our algorithm is 
consistent with the waveform calculated by Zhao et al. (2023), which further demonstrates the accuracy of our 
algorithm. 
4.2 Case2: Fang et al. (2023)  

We have found that the model developed by Darlymple (1974) is unable to obtain convergent solutions for some 
wave-current coupling problems, while the algorithm proposed in this paper overcomes the issue and can obtain 
converged results. For example, Fang et al. (2023) explored the interaction between regular waves and strong following 
linearly sheared current cu = 1.7y+1.0325 with water depth h=0.35m, wave height H=0.0945m, and period T=1.418s. In 

this study, the algorithm proposed in this paper was used for the calculations. The wave profile obtained by this 
algorithm and Fang et al. (2023) is shown in Figure 3 (a). The vertical distribution of u cu under the wave crest and 

wave trough are shown in Figure 3 (b). The linear theory results are also presented in the figures to see the differences 
between nonlinearity and linearity.  

            
                   (a) Wave profile                      (b) u cu under the wave crest and wave trough 

Figure 3 Regular wave interacting with a linear shear current cu = ym/s (H=0.0945m，h=0.35m，T=1.418s) 

Figure 3 shows that the wave profile and u cu under the wave crest and wave trough obtained by the present algorithm 

and Fang et al.’s (2023) fifth order solution are in complete agreement. The phenomenon of sharp wave crest and flat 
trough is obvious, which is different with the results of linear theory, shown in Fig. 3. There is also a significant 
difference between u cu under the wave crest calculated by present algorithm and the result by Fang et al. (2023). 

According to Figure 3 (a), the wave crest position is y=0.067m. The water depth is h=0.35m in this case, then (y+h)/h 
=1.19.  
4.3 Case3: Swan (1990) 

Next we consider the laboratory measurements by Swan (1990), who studied the interaction between progressive 
wave train and shear current cu = 1.67y0.5. In the experiments, the water depth was 0.35m, the wave height was 

0.123m, and the period was 1.42s. The average value of the experimental wave profile is 
/ 2

0
( )d 0.0072

T
t t   . 

However, since the model assumes that the average surface elevation is zero, the laboratory measurements from 
Swan (1990) are adjusted by shifting the data up by 0.011m to meet this condition. We numerically reproduce the 
experimental results of Swan (1990) using the algorithm proposed in this paper. The wave profile result is shown 
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in Figure 4 (a). The experimental data in the figure is shifted up by 0.011m, but the numerical results have not 
shifted up. The u cu under the wave crest measured in the experiment and the calculated results of our algorithm 

are shown in Figure 4 (b). We also include results from Son and Lynett (2014), Chen and Zou (2019) and Zhao et al. 
(2023) in this comparison. 

             
                     (a) Wave profile                             (b) u cu under the wave crest  

Figure 4 Regular wave interacting with a linear shear current cu = ym/s (H=0.123m，h=0.35m，T=1.42s) 

On the wave profile, Figure 4 (a) shows that the calculation results of our algorithm are in good agreement with the 
experimental data. The wave profile calculated by Chen and Zou (2019), obtained by the RANS approach, is not 
smooth at the wave trough. The results of Son and Lynett (2014), using depth-integrated equations, show a significant 
deviation from the experimental data. On the u cu under the wave crest, the calculation results of our algorithm are in 

good agreement with the experimental data, as shown in Figure 4 (b). The results of this paper are in very good 
agreement with those of Zhao et al. (2023), with only slight differences observed near the seafloor. The calculation 
results of Chen and Zou (2019) differ significantly from experimental data near the seafloor and the free surface. The 
u cu  calculated by Son and Lynett (2014) is significantly smaller than the experimental data. 

5 Conclusions 
The approach and code provided by Darlymple (1974) to study the interaction between waves and linear shear 

currents shows instability under extreme conditions, with the calculations not converging. This paper proposes a new 
algorithm using Newton's iterative method based on the stream function theory. The model converges at conditions 
where original model has failed. Results of the model are compared with the numerical results of Zhao et al. (2023), the 
fifth order analytical solution of Fang et al. (2023), and the experimental data of Swan (1990), and the original  
W&LSC stream function theory, demonstrating the convergence and accuracy of the results. 
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