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1 INTRODUCTION  

Accurate and efficient prediction of nonlinear waves interacting with structures has long been a 

concerned problem and is critical for the safety assessment and cost-effective design of marine 

structures. With the development of computer technology, numerical models based on the Navier-

Stokes equations that accurately predict nonlinear wave interactions with structures have recently 

attracted more attention from researchers, many of which employ the volume of fluid method or 

the level-set method to capture the moving water-air interface. However, high computational cost 

of such NSE-based models limit their practical application. 

In order to reduce the high computational cost of NSE-based numerical models, one can discard 

the air phase and use the so-called free surface equation to capture the free surface. Non-hydrostatic 

models are just such models incorporating the free surface equation to deal with the moving free 

surface. The development of non-hydrostatic models has been more than two decades, since 

Casulli and Stelling (1998)[1] and Stansby and Zhou (1998)[2] who simulated free surface flows by 

including non-hydrostatic effects. Therefore, this study analyzed the interaction between focused 

wave and the fixed floating box using non-hydrostatic model (Ai et al. 2022)[3] that employs the 

immersed boundary (IB) method to.deal with fixed floating box. 

2 GOVERNING EQUATIONS 

The governing equations are the incompressible Euler equations, which can be expressed in the 

following forms by splitting the pressure into hydrostatic and non-hydrostatic components such 

that qzgp +−= )(  
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Where u , v and w are the velocity components in the horizontal x and y and vertical z directions, 

respectively, t is the time, p is the normalized pressure divided by a constant reference density, q 

is the non-hydrostatic pressure component, and g  is the gravitational acceleration. Notably, η is 



the free surface elevation in the free surface region and represents the piezometric head in the 

pressurized region. 

Boundary conditions are required at all the boundaries of a 3D domain. In the free surface region,, 

the following kinematic boundary is specified at the moving free surface z = η(x, y, t) 
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In the pressurized region, the kinematic boundary at the body surface is 
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At the impermeable bottom surface z = -h(x, y), the kinematic boundary is 
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By integrating the continuity Eq. (1) from z = -h(x, y) to z = η(x, y, t) and applying Leibniz’ rule 

together with Eqs. (5) and (7), the following free surface equation is obtained: 
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Similarly, by means of integration of the continuity Eq. (1) from z = -h(x, y) to z = -d(x, y) and 

considering Eqs. (6) and (7), the following global continuity equation in the pressurized region is 

obtained: 

 0=



+






−=

−=

−=

−=

dz

hz

dz

hz
vdz

y
udz

x
 (9) 

Considering the IB method is incorporated in the model and all the velocities inside the floating 

structure are zero, Eq. (9) can be rewritten as 
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Notably, Eq. (10) is only valid in the pressurized region and can be used to determine the 

piezometric head. 

3 NUMERICAL ALGORITHMS 

Before using a semi-implicit, fractional step algorithm to solve the governing equations, they are 

first integrated in the vertical direction based on a general vertical boundary-fitted coordinate 

system (Ai et al., 2014)[3]. 

In the explicit projection method, the first step involves solving Eqs. (2)-(4) while disregarding the 

implicit contributions of the non-hydrostatic pressure, thereby yielding the intermediate velocity
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calculated by correcting the intermediate values after including the non-hydrostatic pressure. 
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where )( ,,2/1 kjiIBF uf + , )( ,2/1, kjiIBF vf +  and )( ,, kjiIBF wf  are IB forces.For details about the explicit 

projection method and the implementation of the IB method, the reader can refer to Ai et al. 

(2018)[5]. 

The non-hydrostatic pressures are determined by solving the Poisson equation, which is obtained 

by substituting Eqs. (11)-(13) into the continuity Eq. (1) discretized by the semi-implicit method 

together with the finite difference method. The resulting Poisson equation can be written in the 

following matrix form: 

 bAq =  (14) 

Where A is a sparse coefficient matrix, q is a vector of the non-hydrostatic pressure, and b is a 

known vector related to explicit and intermediate velocities. The coefficients of the matrix A are 

quite similar to those presented in Ai et al. (2019a)[6]. Moreover, A is symmetric and contains 10 

nonzero diagonals in bottom cells and 15 nonzero diagonals in other cells. 

In addition, Eq. (9) and Eq. (10) are discretized by the following fully implicit finite difference 

method for stability. 

4 NUMERICAL RESULTS 

In the test case, a regular wave incident on a box-shaped ship fixed in a harbor is considered. The 

model validation can be referred to in Ai et al. 

(2022)[3]. The computational domain is shown 

in Fig. 1, in which the floating box-shaped ship 

has the dimension of Lx = 0.6 m, Ly = 2.0 m and 

Lz = 0.45 m and is positioned at (21.8 m, 0.0 m, 

0.285 m). The draft of the ship is 0.24 m. In the 

working area, the still water depth is h= 0.3 m. 

The incident focused wave with an amplitude 

H0 = 0.03 m and a wave period T0 = 1.5 s is 

specified at the left boundary of the domain. 

The target wave spectrum is defined by the 

JONSWAP spectrum with a peak enhancement 

factor γ set to 2.2. The focus location is at the center of the structure, and the focus time is 25 s. 

The incident wave is generated using the dispersion-focused method. 

 
Fig. 2 Watar surface of the focus time. 

Fig. 2 shows the distribution of the wave surface along the x-direction (y = 0) at the focus time, 

with the maximum water level observed at the front of the fixed floating box, reaching 0.358 m. 

Fig. 1 Sketch of the model setup 



Fig 3 shows the time series of wave surface elevations in front of and behind the structure. The 

wave amplitude exhibits significant attenuation after passing through the fixed floating box. Fig. 

4 presents time histories of the two nondimensional wave forces in the x  and z  directions. At the 

focus time, the wave forces in both directions are at their maximum. 

 
Fig. 3 Time histories of the water surface elevation. 

 
Fig. 4 The wave forces in the x  and z  directions 

5 CONCLUSIONS 

In this study, the interaction between the focused wave and the fixed floating box is simulated 

using a non-hydrostatic model. The model utilizes a semi-implicit, fractional step algorithm to 

solve the incompressible Euler equation and treats the free surface as a single-valued function of 

horizontal positions. The combination of the immersed boundary method and the global continuity 

equation in the pressurized region is proposed in the model, which renders an efficiFent solution 

of the Poisson equation. The computational analysis reveals that when the focused wave acts on 

the structure, the maximum wave run-up occurs at the front of the fixed floating box at the focus 

time, with a value of approximately 2H0, and the wave forces also reach their maximum. 
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