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1 Introduction
A polynya is a special marine area that remains ice-free or covered only by a thin layer of ice,

despite being surrounded by thick sea ice during the winter, which is also identified as crucial
habitat for seals[1]. In nature, orcas move beneath the ice with undulating motions, generating
waves that break through the ice layer, ultimately allowing them to prey on seals resting on the
ice. Whether from the perspective of marine engineering applications or the study of animal
behavior, it is essential to have a better understanding of the interactions between polynyas,
water, and underwater objects. The linear problem of radiation of surface and flexural-gravity
waves by a submerged cylinder for a ice floe or polynya with free surface was investigated by
Sturova (2015)[2]. It was shown that ice response essentially depends on the position of the
submerged body relative to the elastic plate edges. A similar conclusion was drawn by Li et al.
(2017)[3]’s research, which investigated the interaction of water wave with a body floating in a
polynya. It was shown that no matter how wide the polynya is, the effect of the ice sheet always
exists. More recently, Yang et al. (2024)[4] analytically considered the interaction between a
uniform current with a circular cylinder submerged in a fluid. In the present paper, the response
of a frozen polynya to the motion of an underwater circular cylinder is investigated.

2 Formulation of the problem
Two-dimensional unsteady problem of a circular cylinder moving in a liquid of infinite depth

under a frozen polynya is considered. The problem is described within the Cartesian coordinate
system Ox′y′, see Fig.1. A prime stands for dimensional variables. The parts of the ice, where
|x′| > L′, are modelled as rigid boundary, and the interval −L′ < x′ < L′, y = 0 corresponds to
a polynya covered with a thin ice, see Fig.1. The thickness of ice in the polynya is hi and the
rigidity is D = Ehi

3/
[
12(1− ν2)

]
where E is the Young modulus and ν is the Poisson ratio of

the ice. The liquid is incompressible and inviscid. The rigid cylinder of radius a is placed at
t′ = 0 under the ice with the centre of the cylinder being at x′ = s′0, y

′ = −h′0. The half-length
L′ of the polynya is comparable with the radius of the cylinder a. The cylinder starts to move
impulsively towards the ice cover at t′ = 0 with a constant acceleration at a certain angle β to the
horizontal, see Fig.1. At t′ = tc the cylinder achieves a speed V and continues its motion along a
given trajectory with a given speed being of order of V . The coordinates of the cylinder centre
are x′ = s′(t′) and y′ = −h′(t′), where s′(t′) and h′(t′) are given functions such that s′(0) = s′0,
h′(0) = h′0, ds′/dt′ = V cosβ and dh′/dt′ = −V sinβ at t′ = tc. The liquid flow caused by the
cylinder motion is assumed potential. The corresponding velocity potential ϕ′(x′, y′, t′) satisfies
the Laplace equation in the flow region Ω′(t′), the boundary conditions on the surface of the
cylinder and on the ice/liquid interface, and decays in the far field. Note that the flow region
depends on deflection of the ice cover in the polynya. The hydrodynamic pressure p′(x′, y′, t′)
in the flow region is given by the nonlinear Bernoulli equation. It is convenient to introduce
the moving polar coordinate ρ′, α, to formulate the boundary condition on the surface of the
cylinder, where x′ = s′(t′) + ρ′cosα, y′ = −h′(t′) + ρ′sinα, ρ′ ≥ a and 0 < α < 2π.

The problem is formulated in dimensionless variables, where tc is taken as the time scale, a
as the length scale, V as the velocity scale, and psc = V aρw/tc as the scale of the hydrodynamic
pressure. ρw is the water density. The shape of the ice plate in the polynya is described
by the equation y′ = w′(x′, t′), −L′ < x′ < L′, where w′(x′, t′) is the ice deflection. The ice
deflection is governed by the equation of a thin elastic plate. The scale of the ice deflection
wsc is obtained by requiring balance between the order of the hydrodynamic pressure acting
on the ice sheet, V aρw/tc, and the order of the bending term in the elastic plate equation,
D∂4w′/∂x′

4
= O(Dwsc/a

4), which gives wsc = ρwV a
5/(Dtc). The dimensionless hydrodynamic

pressure in the flow is given by the nonlinear Bernoulli equation,

p(x, y, t) = −ϕt − |∇ϕ|2V tc/(2a)− ygtc/V, (1)
where g is the gravity acceleration and the dimensionless variables are denoted by the same

symbols but without primes. We consider such conditions of the body motion and such elastic



characteristics of the ice plate that the problem is coupled with ice deflection being dependent
on the hydrodynamic loads and the flow being dependent on the ice deflection through the
kinematic condition on the ice/water interface,

V ϕy = wtwsc/tc + εV wxϕx (y = εw(x, t), −L < x < L), (2)

where ε = wsc/a. The flow under the ice depends on the ice deflection, which indicates the
problem is coupled, if wsc/tc is of order of V . Without loss of generality, we set wsc = V tc.
Comparing this deflection scale with the scale which follow from the plate equation, we find
that the problem is coupled if the duration of the acceleration stage is of the order of

tc =
√
ρwa5/D = (a/ci)(ρw/ρi)

1/2
(a/hi)

3/2[
12(1− ν2)

]1/2
, (3)

where ci =
√
E/ρi is the speed of longitudinal waves in the ice, ρi is the ice density.

It is assumed in the present study that the conditions of the motions are such that the
deflection scale, wsc, is much smaller than the length scale of the problem, a. Then ε = wsc/a is
a small parameter of the problem, ε� 1. This condition gives V tc/a� 1, which is satisfied for
relatively small speeds of the cylinder, see (3),

V � ci(ρi/ρw)1/2(hi/a)3/2[12(1− ν2)]−1/2. (4)

The equations of the ice deflection and the flow under the ice at the leading order as
ε→ 0 are obtained in the dimensionless variables by setting ε to zero. The resulting boundary
value problem is linear and coupled. The dimensionless deflection of the elastic plate w(x, t) is
described at the leading order by the equation

χwtt + wxxxx = −ϕt − γw (y = 0, −L < x < L), (5)

where χ = ρihi/(ρwa), γ = εgtc/V . The plate equation (5) is to be solved subject to the clamped
edge conditions and initial conditions,

w(±L, t) = 0, wx(±L, t) = 0, w(x, 0) = 0, wt(x, 0) = 0. (6)

The velocity potential ϕ(x, y, t) satisfies the following equations,
∇2ϕ = 0, (7)

ϕρ = ṡ(t) cosα− ḣ(t) sinα (ρ = 1, 0 < α < 2π), (8)

ϕy = 0 (y = 0, |x| > L), ϕy = wt (y = 0, |x| < L), (9)

ϕ = 0 (x2 + y2 →∞). (10)
The flow region at the leading order as ε→ 0 is the lower half-plane y < 0 with a circular hole

in it, ρ = 1. The strains in the ice plate in the polynya are given by
ε(x, t) = ±εscwxx (−L < x < L), (11)

where εsc = εhi/(2a) is the scale of the strains and the yield strain of the ice, εY = 8× 10−5 from
Brocklehurst et al.(2010)[5] is selected in the present study.

3 Solution of the problem
The velocity potential in the fluid domain is decomposed as,

ϕ(x, y, t) = ṡ(t)ϕ1(x, y, t)− ḣ(t)ϕ2(x, y, t) + ϕ3(x, y, t), (12)

where ∇2ϕj = 0 (j = 1, 2, 3) in Ω(t), (13a)

ϕ1,ρ = cosα, ϕ2,ρ = sinα, ϕ3,ρ = 0, (ρ = 1, 0 < α < 2π) (13b)
ϕj,y = 0 (j = 1, 2, 3, y = 0, |x| > L), (13c)

ϕj,y = 0 (j = 1, 2), ϕ3,y = wt (y = 0, |x| < L), (13d)
ϕj = 0 (j = 1, 2, 3, x2 + y2 →∞). (13e)

It is known that the Neumann problem for the potential ϕ3(x, y, t) has the solution only if the

mean deflection of the ice plate is zero,
∫ L
−L ∂ϕ3/∂y(x, 0, t)dx = 0. Based on Eq.(13d), the ice

deflection is sought in the form,

w(x, t) =

∞∑
n=1

an(t) (ψn(x)− cn/(2L)) . (14)

where ψn(x) are the so-called normal modes of the dry elastic plate and an(t) are the principal

coordinates of the modes, which are to be determined. cn =
∫ L
−L ψn(x)dx. The normal modes

are non-zero solutions of the eigenvalue problem,
d4ψn
dx4

= λ4nψn(x) (−L < x < L), ψn(±L) = 0,
dψn
dx

(±L) = 0. (15)

The functions ψn(x) and the eigenvalues λn for even and odd modes can be found in Korobkin

et al.(2014)[6]. The functions ψn(x) are orthonormal,
∫ L
−L ψn(x)ψm(x)dx = δnm, where δnn = 1



and δnm = 0 for n 6= m.
To solve the problem (5)-(6), it is convenient to introduce a new unknown function u(x, t) =

∞∑
n=1

Un(t)ψn(x), where −L < x < L, and decompose the plate equation (5) as

χwt + ϕ(x, 0, t) = u, ut = −wxxxx − γw. (16)

The equations (13) for the potential ϕ3(x, y, t) show that the potential can be sought in the
form

ϕ3(x, y, t) =

∞∑
n=1

ȧn(t)ϕ3n(x, y, t), (17)

where the series (14) has been used. Substituting Eq.(12) at y = 0 and the series for u(x, t) and
w(x, t) in the system (16), and multiplying both sides of the obtained system by ψm(x), m ≥ 1
and integrating in x from −L to L using the orthonormal condition, we obtain the matrix form
of a system of ordinary differential equations

~at = [χ(I− C) + S]
−1

(−ṡ ~M + ḣ ~N + ~U), ~Ut = [−D− γ(I− C)]~a, (18)

where Snm =
∫ L
−L ϕ3n(x, 0, t)ψm(x)dx, Mm =

∫ L
−L ϕ1(x, 0, t)ψm(x)dx, Nm =

∫ L
−L ϕ2(x, 0, t)ψm(x)dx.

~a = (a1, a2, a3, . . .)
T is the vector of unknown coefficients in (14), I is the unit matrix, C is a

matrix with the elements Cmn = cmcn/(2L), S is the added-mass matrix with elements Smn, D is
diagonal matrix, D = diag(λ41, λ

4
2, λ

4
3, . . .), ~M , ~N and ~U are vectors which depend on the prescribed

position of the cylinder s(t), h(t). Eqs. (18) are solved numerically with the initial conditions

~a = ~0, ~U = ~0 (t = 0). (19)

The boundary value problems (13) for j = 1, 2, 3 are solved by using the conformal mapping
(z − s(t))/µ = i+ 2/(ζ + i), (20)

which maps the ring R < |ζ| < 1 in the ζ- plane onto the flow region Ω(t) in the z- plane. Here
µ =
√
h2 − 1, R = h(t)− µ, z = x+ iy = s(t)− ih(t) + ρeiα in the Cartesian x, y and the local polar

ρ, α coordinates, ζ = ξ + iη = −ireiθ, where −π < θ < π, see Xiong et al.(2024)[7] for details. In
the ζ- plane of the conformal mapping, the decomposition (12) yields

φ(r, θ, t) = ṡ(t)φ1(r, θ, t)− ḣ(t)φ2(r, θ, t) + φ3(r, θ, t), (21)

where φj(r, θ, t) = ϕj(x(r, θ, t), y(r, θ, t), t) j = 1, 2, 3. φj(r, θ, t) can be solved within the corre-
sponding boundary value problem of Eqs. (13),

φ1(r, θ, h) = −2µ

∞∑
n=1

ϕn(rn + r−n) sin(nθ), φ2(r, θ, h) = 2µ

∞∑
n=1

ϕn
[
(rn + r−n) cos(nθ)− 2

]
(22)

where ϕn = R2n/(1−R2n), see Xiong et al.(2024)[7]. The series (14) and (17) suggest the velocity
potential φ3(r, θ, t) of the form

φ3(r, θ, t) = µ

∞∑
n=1

ȧn(t)Ψn(r, θ, t), (23)

where
Ψn(r, θ, t) =

∞∑
j=0

(Cnj cos(jθ) +Dnj sin(jθ))
(
rj +R2j/rj

)
, (24)

Cnj = 1
πj(1−R2j)

θR∫
θL

ψn(x(1,θ,t))−cn/(2L)
1−cos θ cos (jθ) dθ,Dnj = 1

πj(1−R2j)

θR∫
θL

ψn(x(1,θ,t))−cn/(2L)
1−cos θ sin (jθ) dθ, Cn0 =

−
∞∑
j=1

(
1 +R2j

)
Cnj , Dn0 can be set zero. The angle θL(t) and θR(t) are solutions of the equations

x(1, θL(t), t) = −L, x(1, θR(t), t) = L, (25)

The first term in the Right-hand side of formula (5) for the hydrodynamic pressure along the
ice/water interface represents the dynamic component of the pressure, pd(x, t), where

pd(x, t) = −ϕt = −φt − φθxt/xθ (y = 0, −L < x < L). (26)

4 Numerical results and discussion
The numerical results are presented in terms of the dynamic pressure, ice deflections and

strains caused by the motion of the cylinder. Calculations are performed for the following refer-
ence values of the parameters, ρi = 917 kg/m3, E= 4.2× 109 N/m2, ν= 0.3, hi= 0.1 m, g= 9.81m/s2,

ρw= 1000 kg/m3, V= 2 m/s, a= 0.5 m, h′0= 1.5 m, β = π/4, and half-length L′ = 1 m. The integrals
in Section 3 are numerically solved by using the same procedure as Xiong et al.(2024)[7] did.
The series of (14) are truncated by N terms and the system (18) is numerically solved by fourth



order Runge-Kutta method with dimensionless time step ∆t= 10−5. N = 60 was found to pro-
vide accurate solutions. It is convenient to introduce a parameter σ referring to the horizontal
position of the centre of the cylinder to the left hand side of the polynya, as shown in Fig.2. σ
are selected as σ = −3, −2, −1, −0.5, 0, 1 and 2. In fact, the strains distributed along the upper
surface of the polynya reach the yield strain εY at the very beginning of the acceleration stage.
The subsequent analysis concentrates mainly on the process from the initial moment until the
strain reaches the yield value. Fig.3 shows the dimensionless maximum dynamic pressure of the
cases with different σ corresponding to Fig.2. Fig.4 shows the ratio of the strains distributed
along the upper surface to the yield strain at the time instant when the maximum strain reach
the yield value for σ = −3, σ = −0.5 and σ = 2. σ = −0.5 is a special position of the cylinder, see
Fig.3. At the initial moment, the maximum pressure increases with decreasing σ in the range
−0.5 < σ < 2 and decreases with increasing σ in the range −3 < σ < 0.5. Additionally, the time it
takes for the strains of polynya to reach εY is shortest at σ = −0.5, among the cases considered.
Furthermore, the strains at the boundaries of the polynya reaches εY earlier than in the central
region, as shown in Fig.4. More results and discussions will be presented at the workshop.

Figure 1: Sketch of the problem and notations
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Figure 2: Position of the cylinder at each selected σ

0 1 2 3 4 5 6 7 8

10-3

1

2

3

4

5

6

Figure 3: Dimensionless maximum dynamic pressure
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Figure 4: Ratio of the strains to the yield strain
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