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1 INTRODUCTION 
The long time evolution process of modulated wave trains contains rich nonlinear dynamic 
characteristics. Previous studies have shown that there are two important nonlinear mechanisms in 
the long time evolution of wave trains, namely modulation instability and nonlinear wave group 
interactions [1,2]. Investigating its chaotic dynamic characteristics not only helps to reveal the 
intrinsic mechanisms of state transitions in wave systems, but also has significant implications for 
predicting the evolution trends of wave fields. By quantitatively analyzing the nonlinear features 
in the time series of wave surface, it is possible to identify the stability changes of the wave field, 
evaluate the time scale of predictions, and provide essential support for understanding the 
fundamental characteristics of nonlinear wave systems and predicting the evolution of wave fields. 
Therefore, the main purpose of the study is to qualitatively and quantitatively analyze and evaluate 
the chaotic dynamic characteristics during the long time evolution of wave trains based on the 
relevant knowledge of chaos theory, through Phase space reconstruction, Largest Lyapunov 
Exponent, Correlation Dimension, and Kolmogorov Entropy. 
2 METHODOLOGY 
The study employs the High-Order Spectral (HOS) method, which is a phase-resolved numerical 
model used for simulating water wave evolution processes. The model was first proposed by 
Dommermuth and Yue [3], and West [4] in 1987, respectively. Based on the Zakharov equation 
and the concepts of harmonic coupling method, and incorporating the advantages of the Fast 
Fourier Transform (FFT) algorithm. 

The initial condition of the study is the modulated wave train, which consists of a carrier wave 
and a pair of sidebands equidistant from the carrier wave. The initial conditions are as follows: 
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where (x, 0) and s(x, 0) represent the wave surface elevation and the velocity potential at the 
initial time, respectively. These correspond to the free surface elevation and surface velocity 
potential of the carrier wave and can be directly calculated using the analytical solutions of high-
order Stokes waves, as proposed by Schwartz (1974) [5]. Here, 0 and k0 denote the steepness and 
wavenumber of the carrier wave, respectively, where 0=k0a0, and a0 is the amplitude of the carrier 
wave. The sideband wavenumbers and phases are given by k=k0k and =0, where k is 
the difference between the sideband wavenumber and the carrier wave wavenumber, 0 is the phase 
of the carrier wave, and  is the phase difference between the sideband and the carrier wave. The 
amplitudes of the upper and lower sidebands are given by a+ and a-, respectively, and their ratios 
to the carrier wave amplitude are defined as r21=a+/a0 and r22=a-/a0. The parameters for the HOS 



method are set as M=7, N=4096, T0/dt=64, r21=r22=0.1, where T0 is the period of the carrier wave 
and dt is the time step. The simulation time duration is approximately t/T0≈2O(0

-3). And the initial 
wavenumbers–amplitude spectral as well as the corresponding wave surface of initial modulated 
wave train are presented in Fig.1 under the condition of0=0.06. 

 
Fig.1 (a) Initial wavenumber–amplitude spectral and (b) Initial wave surface under the condition of 

0=0.06 

3 EVOLUTION OF WAVE SURFACE 

The evolution of wave surface is the basis for analyzing the chaotic dynamic characteristics of 
wave trains during long time evolution. Fig.3 illustrates the evolution process of the wave surface 
maximum under the condition of 0=0.06. In the figure, the horizontal axis, t/T0, represents the 
time scale of the evolution, while the vertical axis denotes the maximum spatial wave surface at 
any given moment during the evolution, expressed as the dimensionless parameter max/a0. 

 
Fig. 3 Evolution of wave surface maximum for initial wave steepness 0=0.06 

Taking 0=0.06 as an example, according to the evolution of wave surface maximum, the long 
time evolution process (2O(0

-3)T0) can be divided into three distinct stages, that is, the stage of 
modulation instability (green line), the transition stage (purple line), and the stage of nonlinear 
wave group interaction (red line) [2]. During the stage of modulation instability, the evolution of 
wave surface maximum exhibits periodic modulation-demodulation phenomena due to the 
instability of the modulated wave train. As the evolution progresses to the transition stage, the 
periodic variation of the wave surface maximum gradually weakens, while the wave surface shows 
an increasing trend. This is caused by the enhancement of nonlinearity and the gradual weakening 
of modulation instability as the dominant mechanism. In the stage of wave group interaction, the 
fluctuation amplitude of wave surface maximum increases further, and the fluctuation frequency 
becomes higher.  

 



4 ANALYSIS ON CHAOTIC DYNAMIC CHARACTERISTICS OF WAVE TRAINS 

The phase space is a conceptual tool used to describe dynamical systems, and it contains all 
possible states of the system [6]. As shown in Fig.4, the reconstruction trajectories exhibit distinct 
stage characteristics, and the entire process can be divided into three parts: the closed triangle 
trajectory in the lower left corner (green line), the irregular finite region in the upper right corner 
(red line), and the transition trajectory connecting the two regions (purple line). These three parts 
correspond to the stage of modulation instability, nonlinear wave group interaction, and the 
transition stage in the long time evolution of wave trains, respectively. 

 
Fig.4 Two-Dimensional phase space reconstruction trajectories for initial wave steepness 0=0.06 

The triangular region (green line) corresponds to the stage of modulation instability. After a 
finite time of evolution, the reconstruction trajectories form a closed region. Such closed 
trajectories typically indicate repetitive behavior of the system, suggestingt that the system state 
returns to its initial condition over time. This repetitive phenomenon of the reconstruction 
trajectories corresponds precisely to the periodic recurrence of modulation and demodulation of 
the wave surface during the stage of modulation instability. At this stage, the wave field remains 
in a stable state. In the transition stage (purple line), the spatial reconstruction trajectory shows a 
phenomenon of moving away from the triangular enclosed area, indicating that the attractor state 
of the wave field gradually changes, transitioning from a triangular attractor to a strange attractor. 
And the wavefield transitions from stable and predictable at the beginning to unstable. In the stage 
of nonlinear wave group interaction (red line), unlike the stage of modulation instability, the 
reconstruction trajectories at this stage are no longer regular and orderly, nor are they concentrated 
in a specific region. Instead, they appear disordered and intertwined, primarily concentrated within 
an irregular finite region, forming an abnormal and complex attractor known as a strange attractor, 
this is an important characteristic of chaotic systems,  indicating that chaotic behavior is highly 
likely to exist during this stage. 

Based on the qualitative analysis, we have preliminarily identified that the wave field 
transitions from a stable state to a chaotic state during the long time evolution of wave trains. 
Furthermore, the results of the Correlation Dimension (CD), Largest Lyapunov Exponent (LLE), 
and the Kolmogorov Entropy (KE) at different time scales under distinct wave steepness 0 
conditions are shown in Table 1. It is evident that under different wave steepness 0 conditions, 
when the wave train evolution time is relatively short (O(0

-2)T0), all LLE values are negative, 
indicating that the wave field remains a stable state within this time scale. During this stage, there 
are no significant differences in CD values, and KE show a positive correlation with 0, suggesting 
that stronger nonlinearity weakens the stability of wave field. As wave trains further evolves to 



O(0
-3)T0, we found that at lower initial wave steepness (less than 0.08), LLE remains negative, 

indicating a stable wave field state. When 0 increases, LLE>0. Although still in the stage of 
modulation instability, due to stronger nonlinearity, the wave field under larger wave steepness 
conditions transitions from an initially stable state to a chaotic state. During this stage, there are 
also no significant differences in CD values, and overall, KE values show an increasing trend with 
the growth of 0. These results demonstrate that both initial wave steepness and evolution time 
length significantly influence the wave field state, and the greater the wave steepness, the less 
stable the wave field becomes. 

Table.1 Chaos parameters at different time scales under distinct wave steepness 0 conditions 

0 
O(0

-2)T0 O(0
-3)T0 

LLE CD KE State LLE CD KE State 
0.05 -0.024 1.33 0.019 Stable -0.00081 1.21 0.0015 Stable 
0.06 -0.039 1.13 0.021 Stable -0.0034 1.40 0.0031 Stable 
0.07 -0.069 1.07 0.034 Stable -0.0050 1.14 0.0029 Stable 
0.08 -0.019 1.57 0.038 Stable 0.015 1.12 0.0061 Chaotic 
0.09 -0.10 1.11 0.10 Stable 0.011 1.11 0.0046 Chaotic 

Additionally, we adopt Largest Lyapunov Exponent (LLE) to investigate the influence of the 
evolution time length on the state of the wave field, as shown in Fig.5. It can be clearly observed 
that before t/T0≈O(0

-3), that is, in the stage of modulation instability, LLE<0, indicating a stable 
wave field state. As the evolution time increases, the value of LLE gradually increases. When it 
evolves to t/T0≈3O(0

-3), LLE>0, indicating that the wave field is completely in a chaotic state. 
This result further confirms that the long time evolution of wave trains undergoes a transition 
process from a stable state to a chaotic state. 

 
Fig.5 Largest Lyapunov Exponents at different evolution time scales for 0=0.06 
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