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Highlights

• Linear water wave scattering by an array of partially-submerged cylindrical wave energy
converters (WECs) is considered.

• A genetic algorithm is used to find the array layout and device parameters which maximise
the power takeoff of the array in an irregular sea.

• When constrained to a rectangular region, the optimally-configured array consists of two
parallel graded line arrays.

1 Introduction

The development of technologies for water wave energy conversion is an important avenue of
research for the renewable transition. The optimisation of wave energy parks (namely, arrays of
WECs) by analytic, numerical or experimental methods is an active area of research [3]. Here, we
consider the problem of simultaneously optimising both the layout and device parameters of an
array impacted by a broadband incident spectrum. This problem is computationally challenging
due to the high cost of individual simulations (which involve multiple scattering calculations
at multiple frequencies) and the large number of variables to be optimised. Presumably due
to these reasons, we are not aware of any previous studies of this nature. The layouts of wave
energy parks in irregular seas were optimised by [7, 9], although the device parameters were
fixed throughout these optimisations. We consider a model of a wave energy park consisting of
an array of partially submerged truncated cylinders coupled to a spring and damper—the layout
of an array of such devices was previously optimised in [2] for a regular sea. By simultaneously
optimising the device parameters and the park layout, we find an optimal array consisting of
parallel graded line arrays. Although graded arrays of WECs are known to have impressive
energy absorption capabilities [13, 12], a graded array has not previously arisen from a joint
layout/parameter optimisation without imposing grading as a constraint.

2 Problem formulation and solution

We initially consider a single WEC consisting of a truncated, partially-submerged cylinder,
which is constrained to move in heave and coupled to a spring-damper power takeoff system.
The scattering problem is posed using time-harmonic linear water wave theory, which assumes
that the fluid is incompressible and inviscid and undergoing irrotational, time-harmonic motion
with time dependence e−iωt. In cylindrical coordinates, the problem can be reduced to finding
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the complex potential ϕ, which satisfies the boundary value problem

△ϕ = 0 (r, θ, z) ∈ Ω (1a)

∂zϕ = −iωs r < a, z = −d (1b)

∂zϕ =
ω2

g
ϕ r > a, z = 0 (1c)

∂zϕ = 0 z = −H (1d)

∂rϕ = 0 r = a, z > −d, (1e)

where Ω is the fluid domain, g is acceleration due to gravity, a and d are the radius and
equilibrium submergence of the cylinder and s is its heave amplitude, which we assume to be
small. Equations (1) are solved in conjunction with a prescribed incident wave, a Sommerfeld
radiation condition, a weak singularity condition at the submerged edge of the cylinder, and an
equation of motion of the form

−ω2ρdπa2s = iωµs− kss− ρgπa2s+ iωρ

∫ π

−π

∫ a

0
ϕ(r, θ,−d)rdrdθ, (2)

where the terms on the right hand side correspond to the damping, spring, hydrostatic and
hydrodynamic forces, respectively, with ρ, µ and ks being the fluid density, damping coefficient
and spring coefficient, respectively. By rotational symmetry, the solution to (1) can be expressed
as

ϕ(r, θ, z) =
∞∑

n=−∞
ϕn(r, z)e

inθ, where ϕn(r, z) =

{
φn(r, z) r > a, z ∈ (−H, 0)

χn(r, z) r < a, z ∈ (−H,−d).
(3)

Expressions for φn and χn, which we do not state here for brevity, are obtained using the method
of separation of variables. Equation (3) gives rise to a matching problem between the interior
region r < a and the exterior region r > a, as ϕn must be continuously differentiable at r = a
for all n. The matching problem is solved using an integral equation/Galerkin method, in which
the normal derivative ∂rϕn(a, z) is expanded in a basis of weighted Gegenbauer polynomials [4].

Next, we consider the multiple scattering problem of N WECs centred at (xj , yj) for
1 ≤ j ≤ N , which we solve using the self consistent theory of multiple scattering and Graf’s
addition theorem [6]. We invoke the wide spacing approximation to simplify the computation,
which assumes that evanescent modes do not contribute to the interaction between cylinders.
Wiscombe’s formula is used as a heuristic for the minimum number of angular modes required
for accuracy [14]. A generalised optical theorem, which relates the amplitudes of the pistons to
the far field function, is used to validate conservation of energy by the array [8].

We optimise the rate of energy absorption by the array in an irregular sea, given by

P (X) =

∫ ∞

0
P (X,ω)

√
2S(ω)dω, (4)

whereX is a vector containing the coordinates of the WECs and their parameters (here compris-
ing their spring and damping coefficients) and P (X,ω) is the average rate of energy absorption
by the array when acted on by a monochromatic plane wave of unit amplitude with angular
frequency ω. The spectral density function S is taken to be the Pierson-Moskowitz spectrum
[11] with significant wave height Hs = 2m. The reader is directed to [10] for the technical
details of the integral in (4).

3 Results and conclusion

The objective function (4) is optimised for an array of N = 25 WECs using MATLAB’s built-in
genetic algorithm ga. The WECs are constrained to the rectangular region 0 ≤ xj ≤ Dx = 200m
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Figure 1: (a) Layout of the optimal array, with WECs marked as circles not drawn to scale.
Colour indicates the frequency at which the WEC, if isolated, would draw maximum power from
monochromatic plane waves. Note the direction of wave propagation is from left to right. (b)
Pierson-Moskowitz spectrum used in the optimisation problem (blue line) and power extraction
of the array from unit amplitude monochromatic waves as a function of frequency (red line).

and 0 ≤ yj ≤ Dy = 50m for all 1 ≤ j ≤ N . The radius and submergence of the WECs are
fixed to be a = d = 1m. Non-restrictive constraints are imposed on the spring and damping
coefficients—notably, negative spring coefficients are permitted (as in [12]). The output of one
run of the genetic algorithm, which does not necessarily coincide with the global optimum, is
given in Fig 1.

Of note, two parallel graded line arrays emerge as elements in the optimally configured array,
which suggests that rainbow absorption is occurring. This is a phenomenon exhibited by graded
arrays, in which waves slow down and amplify at different locations depending on frequency,
where their energy can be subsequently absorbed. Previous studies of rainbow absorption in
water waves [13, 12] imposed grading as a constraint in the optimisation process. The fact
that grading arises naturally in our problem suggests that rainbow absorption is of fundamental
importance in wave energy parks optimally configured for broadband spectra.

Future work will consider this problem as a multi-condition optimisation problem (MCOP),
in which the effect of certain parameters on the optimal solution are sought. In our context, the
significant wave height Hs and the aspect ratio of the bounding rectangle of the array Dx/Dy

would both be interesting to consider as conditions. MCOPs are of the form

min
x∈X

f(x; c) for all c ∈ Φ, (5)

where f is the objective function, X is the space of decision vectors and Φ is the condition space.
Although traditional methods (e.g. genetic algorithms) can only solve MCOPs by discretising
them into a set of standard optimisation problems, algorithms based on deep reinforcement
learning efficiently solve MCOPs through a seamless incorporation of the condition space [5, 1].
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