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1 INTRODUCTION
Our recent experimental investigations of flexible side-by-side blades under both steady and unsteady
flows have observed flutter in both scenarios. Flutter significantly impacts blade kinematics and the
hydrodynamic drag experienced by the blades. Our numerical approach [1], utilizing the reactive force
model, successfully reproduces flutter phenomena. In contrast, the traditional Morison’s equation fails to
trigger flutter. In the static regime where flutter does not occur, the bulk drag coefficients calibrated from
experiments in steady and unsteady flows can be unified through an effective Cauchy number, allowing
for the use of analytical models developed for steady flows in unsteady flows. In the flutter regime, using
the bulk drag coefficient from steady flows underestimates the drag load in oscillatory flow.

2 THEORY
We start by considering a flexible blade with constant length l, width b, and thickness d, clamped at one
end and initially oriented perpendicular to a uniform, steady flow Uc of fluid with density ρ. The system
is governed by four non-dimensional parameters:
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where ρs and EI are the structure density and bending stiffness, CD and CM are the cross-flow drag
coefficient and added mass coefficient, respectively. Physically, the mass ratio β represents the proportion
of fluid inertia relative to the total inertia of the system. The Cauchy number Cac quantifies the ratio of
the drag force to the restoring force due to bending stiffness. The buoyancy parameter B indicates the
ratio of the restoring force due to buoyancy (or weight if gravity force dominates) to that due to bending
stiffness. The slenderness parameter λ is proportional to the length-to-width ratio l/b. In scenarios
involving a uniform oscillatory flow U(t) = ωA sin(ωt), where A and ω are the amplitude and angular
frequency of the oscillatory flow, an additional non-dimensional parameter α and a modified definition of
the Cauchy number are introduced:
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where UM = ωA. α is the ratio of the oscillatory flow’s amplitude to the structure’s length.
For a bunch of multiple blades, we introduce the equivalent thickness and bending stiffness approach.

Specifically, for a collection of N blades, the entire assembly is treated as a single entity with an effective
thickness of Nd and an effective bending stiffness of NEI, where d and EI are the thickness and bending
stiffness of an individual blade, respectively.

We employ an analytical model and the explicit truss-spring numerical model [1] to investigate blade
reconfiguration and drag loads. The latter has been validated against experimental results by [2] on the
reconfiguration of elastic blades in oscillatory flows (see [1] for detailed methodology).

3 RESULTS
In this section, the experimental results in steady and unsteady flows are presented using non-dimensional
parameters. Both experiments encompassed β ∈ [0.765, 0.993], B ∈ [726.1, 2904.6], λ ∈ [5.4, 23.7]. The
steady flow tests spanned Cac ∈ [6.28× 101, 2.08× 106], while the forced oscillation tests covered Cas ∈
[1.67× 103, 1.42× 105] and α ∈ [0.77, 2.51].



Figure 1: Static reconfiguration at Cac = 1.20× 104 and flutter at Cac = 1.30× 105 in steady flow.

Figure 2: Snapshots of the blades during the second quarter of a cycle (π/2 < ωt < π). Top row: no flutter,
Cas = 1.58× 104, α = 1.06; bottom row: flutter, Cas = 3.56× 104, α = 2.51.

3.1 Kinematic regimes and bulk drag coefficient
Two distinct kinematic regimes were observed in both experiments: the static regime at low Ca and the
flutter regime beyond the critical Ca. Photographs depicting these regimes under steady and unsteady
flows are shown in fig. 1 and fig. 2, respectively. The blade kinematics exhibit significant differences
between the two regimes.

We calibrate the bulk drag coefficient in steady flows and unsteady flows, respectively, using

Cc
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where Fx is the measured horizontal force on the blade mimics. Ca is found to be the primary variable
in both scenarios. Although Ca appears in both scenarios, it is defined slightly differently. Since both
experiments utilized the same blade mimics and arrangements, a comparison between the two data sets is
feasible without additional normalization. We first define the effective flow velocities Ue as the variance
of the external flow velocity:

U c
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for a uniform current and oscillatory flow, respectively. Using these effective flow velocities, we further
define the effective Ca, as Cace = Cac and Case = 1/2Cas. The two data sets of CD,bulk are plotted against
Cae in fig. 3.

In both scenarios, CD,bulk follows similar trends. Prior to flutter, CD,bulk decreases with increasing
Ca at moderate values, with the rate of decrease closely related to B. This trend persists until the onset
of flutter, beyond which CD,bulk ceases to decrease in the flutter regime. While more details will be
presented in the workshop, the effects of the non-dimensional parameters on CD,bulk are summarized in
Table 1. It is obvious that flutter significantly influences both the reconfiguration and the drag loads
experienced by the flexible blades. Utilizing the effective Ca, we observe that CD,bulk for side-by-side
blades in oscillatory flows closely align with those in a uniform current within the static regime. This
congruence between the two datasets permits the application of the well-established analytical models
[3] (e.g., the analytical predictions in fig. 3) developed for uniform currents to predict the drag loads
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Figure 3: CD,bulk calibrated from experiments in a uniform current (blue markers) and in oscillatory flows (red
markers) for B = 2904.6 (left) and B = 726.1 (right). The black curves and the dashed lines are the analytical
prediction with λ → ∞.

Table 1: Effects of the common non-dimensional parameters on CD,bulk and the system stability.

Term CD,bulk prior to flutter System stability CD,bulk in flutter regime

β minimal stabilizing negatively correlated
B positively correlated stabilizing depends on β as well
λ minimal stabilizing negatively correlated

on side-by-side blades in oscillatory flows prior to the onset of flutter. On the other hand, in the flutter
regime, using the bulk drag coefficient from steady flows underestimates the drag load in oscillatory flows.
The latter has industrial relevance to floating seaweed farms exposed to large waves.

3.2 Hydrodynamic load model and system stability
The numerical model uses the same two-dimensional sectional hydrodynamic load model as [2], which
consists of two parts, the resistive drag qd and the reactive force qam:
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where Un and Uτ are the normal and tangential components of the relative velocity between the blade
and the flow, ma = πρCMb2/4 is the added mass, and s is the arc length along the blade. Using this
hydrodynamic load model, our numerical model is able to predict CD,bulk and the onset of flutter by
adjusting the unknown CM and thus λ, as shown in fig. 4.
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Figure 4: Numerical prediction of CD,bulk with different λ (lines) and the experimental data for steady flow (left)
and unsteady flow (right). The λ values are annotated on the lines. For each scenario, snapshots of the blade
trajectory in the flutter regime are also provided at the point marked by triangles.



Table 2: Terms in the reactive force model and their effects on the system stability.

Term ∂2r/∂t2 · n −∂θ/∂tUτ −∂θ/∂tUτ κU2
τ −1/2κU2

n

Resulting from ∂(Unn)/∂t ∂(Unn)/∂t −∂(UτUnn)/∂s −∂(UτUnn)/∂s 1/2∂(U2
nτ )/∂s

Corresponds to ∂2η/∂t2 u
√
β∂2η/(∂t∂s) u

√
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On system stability / stabilizing stabilizing destabilizing none

For an inextensible structure in a steady flow, qam simplifies to

qam = −ma

[
∂2r

∂t2
· n− 2

∂θ

∂t
Uτ + κ

(
U2
τ − 1

2
U2
n

)]
n. (6)

We can investigate the effect of each term in the reactive force model by selectively disabling them in our
simulations. By testing different combinations of including or excluding the terms, we list the effects of
different terms on the system stability in Table 2. Notably, κU2

τ = U2
τ ∂θ/∂s has a destabilizing effect.

When this term is excluded, flutter never occurs. The conclusions in Table 2 can also be drawn by
comparing the terms in the reactive load model to those in the classic non-dimensional small-amplitude
flutter equation for an undamped beam in axial flow:
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where η is the lateral displacement and u = Ca/λ is the reduced velocity. We apply the Galerkin method
to solve Eq. (7). We set β = 0.8, which falls within the range of our experiments. By excluding u2∂2η/∂s2,
which corresponds to κU2

τ in Eq. (6), we find that all modes remain stable regardless of the value of u,
as shown in fig. 5 where dimensionless complex frequencies of the four lowest modes are presented. By
halving the second term in Eq. (7), equivalent to reducing β to one quarter to its original value, system
instability occurs at lower u. Those observations are consistent with the conclusions in Table 2. The
traditional Morison’s equation, not including the term κU2

τ , is insufficient to trigger flutter or predict
the drag reduction in application of highly compliant structure. More results will be presented in the
workshop. This work was supported by Alliance Scholarship at Technical University of Denmark and the
Research Council of Norway through SFI BLUES, grant number 309281.
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Figure 5: The dimensionless complex frequency of the four lowest modes (β = 0.8) as a function of the reduced
velocity annotated along the curves when u2∂2η/∂s2 is excluded. Im(ω) remains positive, which indicates stability.
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