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1 INTRODUCTION  

Perforated structures are widely used coastal structures to provide protection for ports and docks for 
ship loading and unloading. The presence of a wharf or breakwater beside a body will makes the incident 
and scattered waves be reflected between the body and the wall continuously. Thus, the resonance 

phenomenon may occur at some special frequencies. Accordingly, the hydrodynamic problem is more 
complex to be computed. Teng et al. (2023) and Teng et al. (2025) proposed a reduction mirror image 

method to treat the partial reflection condition, and derived the diffraction and radiation solutions for a 
uniform cylinder in front of a partial reflecting vertical wall by eigenfunction expansion method. 

In this work, the reduction mirror image method is extended for the diffraction and radiation problems 
of arbitrary 3D bodies in front of a partial reflecting vertical wall. The integral equation method is applied 
to solve the wave diffraction and radiation problems. Numerical examination is carried for a rectangular 
barge in front of a partial reflecting wall. The numerical results show that the exciting wave force and the 

hydrodynamic coefficients oscillate with the wave number, and the oscillation amplitudes decrease with 
decreasing the reflecting coefficient of the wall. For a solid wall the exciting force and the hydrodynamic 

coefficients have large peaks at the resonance frequency of the gap between the barge and the wall. With 
applying partial reflecting wall, the peaks of exciting wave force and hydrodynamic coefficients can be 
reduced greatly. 

2 BOUNDARY ELEMENT METHODS FOR 3D BODIES IN FRONT OF A PARTIAL 
REFLECTION WALL 

Consider the diffraction and radiation problems of an arbitrary 3D body arranged in front of an infinite-

long vertical wall with a partial reflection coefficient i
RR K e  . Without losing generality we assume the 

fluid domain and the body is on the left-hand side of the wall. A right-handed Cartesian coordinate systems 
Oxyz is established, with its origin at the intersection of the wall and the free surface. The x-axis directs 

rightward, the y-axis is along the wall and the positive z-axis is vertically upwards, as shown in Fig. 1. The 
body center is located at (-B, 0). 

As usual, we divide the total complex wave potential into the incident potential 0 , the diffraction 

potential 7  and the radiation potentials ( 1, 2,...,6)j j  . These velocity potentials must satisfy the free 

surface condition, the body surface condition, the far field condition, and the partially reflecting wall 



condition. At the nearby of the partial reflecting wall, we further divide the wave potential j (j=0,1,…,7) 

into the incident component ( )R
j  to the wall and the reflection component ( )L

j  from the wall. The 

reflecting wave component and the incident component should satisfy the following relationships at the 

wall: 
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where R is the reflecting coefficient of the wall. 
To satisfy the partial reflecting condition at the vertical wall (x=0), the total incident potential is 

defined in the fluid domain (x<0) as 
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where d is the water depth, A the amplitude of the incident wave and k the wave number, which satisfies 

the dispersion equation 2 tanhgk kd   with the wave frequency ω. cosxk k   and sinyk k   are the 

wave number components in the x and y directions, where β is the wave incident angle relative to the x-axil. 
Applied the reduction mirror image method (Teng et al, 2023, 2025), the wave diffraction and radiation 

problems of a body in front of a partial reflecting wall can be substituted by the analogy of the diffraction 

and radiation problems of the body BS  and its image bS  about the Oyz plan in the infinite domain, as 

sketched in Fig. 2. The scattering potential ( )j x  (j=1,2,…,7) and its normal derivation ( ) /j n x  on the 

image surface bS  are described as the R time reductions of the corresponding terms on the body surface 

BS  at the symmetric position, i.e. 
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where R is the reflection coefficient of the partial reflecting wall. 
With application of the wave Green function, the integral equations for the scattering potentials of the 

analogy problem can be derived as 
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where α is the free term coefficient, which is a function of body geometry. 
Taking the relationship between the scattering potentials and their normal derivatives on the imagery 

body surface bS  and the body surface BS , as Eq. (3), the above integral equation can be written as 
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where ˆ ( , , )x y z x  represent the symmetric position of ( , , )x y z  about the plan Oyz. 



As the image body bS  and the original body BS  are symmetrically arranged about the y axil, we 

discretized the image body surface bS  with the symmetric mesh of the original body BS . Thus, only the 

potentials on the original body need to be determined. After solving the potentials on the body surface, the 
exciting wave force, added mass and radiation damping of the body can be obtained by integration of the 
potentials over the body surface.  

NUMERICAL RESULTS FOR A FLOATING BARGE 

To examine the influence of a partial reflection wall on the hydrodynamic property of a floating body 
in front of it, a floating rectangular barge with a width of 2a, a length of 2L/a=6 and a draft of T/a=1 is 
computed. The water depth is taken as d/a=2. The long side of the barge is parallel to the y-axis. The 
distances between the barge center and the wall are selected as B/a=2.0 and 1.2 (or the gap width between 
the barge and the wall is e/a=1.0 and 0.2), respectively.  

Fig. 3 shows the variation of the sway forces, the force component in the x-direction, on the barges 
arranged at B/a=2.0 and 1.2 under the action of normal incident waves. It can be seen that the sway forces 

firstly increase with increasing dimensionless wave number ka and begain to decrease oscillatingly after 
reaching their maximums. The maximum and its occurring frequency increase with decreasing the gap 

width between the barge and the wall. With decreasing the reflection coefficient of the wall the peak and 
oscillation amplitude can be decreased quickly. 

Fig. 4 shows the variation of the heave force on the barge, the force component in the z direction, 
under the action of normal incident waves with the dimensionless wave number ka. It can be seen that at 

low frequency the heave force increases with the reflection coefficient of the wall. When the reflection 
coefficient R=1.0, the heave force can be doubled. With increasing wave number, the heave force begain 

to deacrease oscillatingly. When the gap is narrow, the second peak can appear. 
More results on wave force, added mass and radiation damping coefficients will be presented on the 

workshop. 

CONCLUSIONS 

From the examination, the following conclusions can be obtained: 

1. The exciting wave force and the hydrodynamic coefficients on a body in front of a partial reflecting 
wall usually oscillate with the wave number, and the oscillation amplitude decreases with decreasing 
the reflection coefficient. For a rectangular barge, the exciting wave force and the hydrodynamic 
coefficients change quickly at the wave number corresponding to the gap resonance frequency. 

2. With decreasing the reflection coefficient of the wall, the gap resonance influence on the exciting wave 
force and hydrodynamic coefficient can be reduced quickly. It is an effective measure to keep ships 

steady by applying a partial reflecting wall as the wharf. 
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Fig. 1 Sketch of a body in front of a partial 

reflecting wall. 

 

Fig. 2 Analogy to the wave diffraction and 

radiation from the body and its image in 

open water 

 

 

(a) B/a=2.0 

 

(b) B/a=1.2 

Fig. 3 The x-direction wave force / 4xf gAaL  on a floating barge in front of a partial reflecting wall. 
 
 

 

(a) B/a=2.0 

 

(b)  B/a=1.2 

Fig. 4 The z-direction wave force / 4zf gAaL  on a floating barge in front of a partial reflecting wall. 
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