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1 INTRODUCTION

The linear problem of oscillation of a body submerged in a free-surface fluid has been studied well
enough [1,2]. It was assumed that in an undisturbed state the fluid is either at rest or flows at a
constant velocity over depth. However, under real conditions there is often a variation in the velocity
and the direction of the fluid current with depth. The review of studies on the interaction of surface
waves and shear flows was given in [3,4].

One of the very simple examples of shear flow with variable vorticity is a two-layer fluid with a
free surface, in the upper layer of which there is a linear shear current and the lower layer is at rest.
The study of the dispersion properties of wave motion for an infinitely deep lower layer was carried
out in [5], and for a fluid of finite depth, it was performed in [6]. It was shown that the flow under
consideration becomes unstable for a certain range of wavenumbers at sufficiently high shear flow
velocity on the free surface [7].

Here, we describe the wave motion caused by the switching-on of an oscillating dipole (horizontal
or vertical) located in the layer of fluid that is initially at rest. A similar problem has been recently
solved for an oscillating source in [8].

2 MATHEMATICAL FORMULATION

We consider the horizontal layer of a homogeneous inviscid incompressible fluid of constant depth
H bounded from above by a free surface and bounded from below by a horizontal bottom. In the
unperturbed state, the part of fluid is at rest, and in the upper or lower layer of thickness h, there
is a shear flow with a linear velocity profile (Figure 1). In the first case (a), the horizontal velocity
in the upper layer is equal to U(y) = U0y/h, and in the second case (b), in the lower layer U(y) =
−U0(y +H1)/h. The system of the Cartesian coordinates x, y is introduced so that, in the first case,
the horizontal axis x coincides with the unperturbed interface between the shear and rest layers, and,
in the second case, with the unperturbed free surface, the y axis is directed vertically upwards. The
thickness of the layer at rest is equal to H1, and the total depth of fluid is equal to H = H1 + h.

Figure 1. Schematic diagram.

It is assumed that in the fluid at rest either the horizontal or vertical dipole begins to operate at time
t = 0 at point x = 0, y = −D, 0 < D < H1, oscillating with angular frequency Ω.

2.1 Upper Shear Layer

In a shear layer, the linearized Euler equations have the form

( ∂

∂t
+ V · ∇

)

v + v
dV

dy
+

∇p1

ρ
= 0, div v = 0 (|x| <∞, 0 ≤ y ≤ h), (1)



where V = (U(y), 0) is the velocity vector of the main flow, U(y) = U0y/h, v = (u, v) are the velocity
vector of disturbed motion, p1 is the dynamic pressure, and ρ is the fluid density.

In the presence of the linear shear of the main flow, the wave motion components can be represented
in the form u(x, y, t) = ∂φ1/∂x, v(x, y, t) = ∂φ1/∂y, where the function φ1(x, y, t) satisfies the Laplace
equation

∂2φ1/∂x
2 + ∂2φ1/∂y

2 = 0 (|x| <∞, 0 ≤ y ≤ h).

The kinematic and dynamic conditions on the free surface of the fluid take the form

∂η/∂t+ U0∂η/∂x = v, ρgη = p1 (y = h),

where η(x, t) is the surface elevation and g is the gravitational acceleration.
In the lower layer, the velocity potential Φ(x, y, t) can be presented as

Φ(x, y, t) = Φ0(x, y, t) + φ2(x, y, t) (|x| <∞, −H1 ≤ y ≤ 0), (2)

where Φ0(x, y, t) is the dipole velocity potential: for the horizontal dipole,

Φ0(x, y, t) =
µ0

2π

x sin(Ωt)

[x2 + (y +D)2]
, (3)

for the vertical dipole,

Φ0(x, y, t) =
µ0

2π

(y +D) sin(Ωt)

[x2 + (y +D)2]
, (4)

µ0 is the dipole moment amplitude. The function φ2(x, y, t) satisfies the Laplace equation.
At the interface between the upper and lower layers, the conditions of continuity of the vertical

velocity and the pressure should be satisfied

∂φ1/∂y = ∂Φ/∂y, p1 = −ρ∂Φ/∂t (y = 0),

The bottom condition is ∂Φ/∂y = 0 (y = −H1). At the initial instant of time, there are no wave
disturbances

φ1 = φ2 = 0, η = 0 (t = 0). (5)

2.2 Near-Bottom Shear Layer

In the upper layer of fluid, we seek the velocity potential Ψ(x, y, t) in the form similar to (2)

Ψ(x, y, t) = Φ0(x, y, t) + ψ1(x, y, t) (|x| <∞, −H1 ≤ y ≤ 0),

where the function Φ0(x, y, t) is given in (3) and (4) for horizontal or vertical dipole, respectively, and
the function ψ1(x, y, t) satisfies the Laplace equation.

In the lower layer (−H ≤ y ≤ −H1), in which the shear flow U(y) = −U0(y +H1)/h takes place,
the linearized Euler equations similar to (1) are satisfied, and we seek the velocity components of wave
motion in the form: u(x, y, t) = ∂ψ2/∂x, v(x, y, t) = ∂ψ2/∂y, where the function ψ2(x, y, t) satisfies
the Laplace equation. The boundary conditions on the free surface are given by

∂η/∂t = ∂Ψ/∂y, gη + ∂Ψ/∂t = 0 (y = 0).

At the interface between the layers, we have

∂Ψ/∂y = ∂ψ2/∂y, ∂
2Ψ/∂x∂t = ∂2ψ2/∂x∂t− U0/h∂ψ2/∂y (y = −H1),

and on the bottom ∂ψ2/∂y = 0 (y = −H). The initial conditions are similar to (5).

3 SOLUTION METHOD

To solve the initial-boundary-value problems formulated in Section 2, we use the Fourier and Laplace
transforms in the following form:

φ̄1(k, y, s) =

∫ ∞

0
e−st

∫ ∞

−∞
φ1(x, y, t)e

−ikxdxdt.



Similar transformations are introduced for the remaining unknown functions.
Using expansions in hyperbolic functions for φ̄1,2 (for more details, see [8]), we obtain the solution

for the function η̄(k, s) using the example of a vertical dipole for a fluid with an upper shear layer

η̄ = µ0Ω|k| [e
−2|k|(H1−D) − 1]e−|k|(D+h)

1 + e−2|k|H

s(s+ ikU0)

(s2 + Ω2)P (k, s)
.

Here, P (k, s) is a third-degree polynomial

P (k, s) = s3 + ia1s
2 + a2s+ ia3,

a1(k) = 2kU0 +γ[b+− tanh(|k|H)], a2(k) = g|k| tanh(|k|H)+γ[kU0(tanh(|k|H)−2b+)+γb−]−k2U2
0 ,

(6)

a3(k) = γ[kU0(γb− − kU0b+) + g|k|b−], b±(k) = (1 ± e−2|k|h)
1 − e−2|k|H1

2(1 + e−2|k|H)
, γ =

U0

h
sgnk. (7)

The polynomial can be represented in the form P (k, s) =
∏3

n=1(s − sn), where sn(k) (n = 1, 3) are
the roots of the equation P (k, s) = 0. After performing the inverse Laplace and Fourier transforms,
we obtain the following solution for the surface elevation:

η(x, t) =
µ0Ω

π

∫ ∞

0
kF (k)[A(k, t) cos kx−B(k, t) sin kx]dk, (8)

F (k) =
[e−2k(H1−D) − 1]e−k(D+h)

1 + e−2kH
, A(k, t) + iB(k, t) =

5
∑

n=1

αn(k)esn(k)t, s4,5 = ±iΩ.

The functions αn(k) (n = 1, 5) satisfy the equality

s(s+ ikU0)

(s2 + Ω2)P1(k, s)
=

5
∑

n=1

αn(k)

s− sn(k)
,

and their determination reduces to solving the system of five linear algebraic equations. In deriving
(8), we used the property of the functions sn(k) (n = 1, 3) and αn(k) (n = 1, 5), which means that
their values for k > 0 and k < 0 are complex conjugate.

4 DISPERSION RELATIONS

It is possible to investigate the dispersion properties of the waves that arise in the cases under consid-
eration. For each of the waves, the dispersion relation establishes the dependence of its frequency ω
on the wavenumber k. Using the equation P (k, s) = 0 and introducing the change of variable ω = is,
we obtain the polynomial for determining the dispersion relations for each of the three wave modes

ω3 − a1(k)ω
2 − a2(k)ω + a3(k) = 0, (9)

where the values of an(k) (n = 1, 3) are given in (6),(7). It is easy to see that for each of the three
waves the equality ωn(k) = −ωn(−k) is fulfilled.

For near-bottom shear layer, the dispersion relations are defined as the roots of a polynomial

ω3 − b1(k)ω
2 − b2(k)ω + b3(k) = 0, (10)

b1(k) = γf+, b2(k) = g|k| tanh(|k|H), b3(k) = gγ|k|f−, f±(k) = (1 ± e−2|k|H1)
1 − e−2|k|h

2(1 + e−2|k|H)
.

5 NUMERICAL RESULTS

We use the following input parameters: h = 10 m, H1 = 30 m,H = 40 m. In Figure 1(a), the
dispersion dependencies for the case of the upper shear layer are presented, defined as the roots of
Eq. (9). Curves 1 and 2 correspond to a fluid at rest in an unperturbed state, for which there are
only two wave modes ω = ±

√
gk tanh kH. Curves 3-5 and 6-8 show the dispersion relationships for

U0/
√
gh = 0.2, 0.5, respectively. For given parameters, the wave motion is stable when U0 is less

then 7 m/s. Figure 2(b) shows the dispersion dependencies for the near-bottom shear layer, which
are defined as the roots of Eq. (10), at U0/

√
gh = 0, 2.5, 5.



Figure 2. Dispersion dependencies.

It can be seen that in the presence of the near-bottom shear flow, two wave modes practically coincide
with the case of a shear-free flow, and the third mode increases sharply with velocity U0. In this case,
no unstable wave motions were detected.

The free surface elevation is presented in Figure 3(a),(b) for the upper and the lower shear layers,
respectively, at a fixed time value. In Figure 3(a), the values U0/

√
gh = 0.5, Ω

√

h/g = 1, D =
10 m, t = 150 s were taken. In Figure 3(b), the values U0/

√
gh = 2.5, Ω

√

h/g = 1.2, D = 20 m, t =
300 s were used.

Figure 3. Free surface elevation.

More detailed numerical results will be presented at the Workshop.
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