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HIGHLIGHTS
The oscillations of a semi-infinite viscolaelastic ice plate under incident gravity wave is found
by vertical modes expansion in the presence of an intermediate detached section between the
free surface and the plate. The length of this section calculated after determination of the
point of maximum stresses for semi-infinite plate. The time harmonic solution is constructed
and investigated for a wide range of parameters of the problem.

1 INTRODUCTION AND GOVERNING EQUATIONS
The oscillations of a semi-infinite viscoelastic ice plate are considered. The problem is solved
in 2D formulation. The oscillations are induced by an incident gravity wave propagating
from left to right direction with constant amplitude and frequency. The plate occupies the
positive half-axis, while the negative half-axis surface is free one. The water depth is finite
and equal to H (−H < z < 0). The boundary between the free surface and the ice plate is
located at x = 0, see Fig.1. A key aspect of the problem is the consideration of damping
in the oscillations of the viscoelastic plate in the presence of additional finite floating plate
or broken ice. The damping is modeled considering the Kelvin-Voigt model of viscoelastic
material introducing the so-called retardation time. See [1] for the discussion of application
of this model to describe ice behavior.

Figure 1: Scheme of the problem in dimensionless variables. Region I: liquid flow with free
surface, Region II: liquid flow covered by broken ice or finite plate, Region III: liquid flow
covered by semi-infinite viscoelastic plate.

The solution is sought in the form of harmonic oscillations with the frequency of the
incident wave. In the first step of solving the problem, the location of the maximum strains
is determined for the semi-infinite plate (B = 0), which is typically found near the edge.
Tkacheva [2] found for a semi-infinite elastic plate B ≈ 0.47Lch, where Lch is length of a
flexural-gravity wave penetrating into the plate with the same frequency. After the maximum
found we believe that ice plate broken at this point if this maximum is higher than stresses



limit and a ”detached” section is introduced. The ”detached” section is modeled as (a)
broken ice, (b) a finite viscoelastic plate with the same viscoelastic properties, and (c)
a rigid plate. In the latter two cases, the free edge conditions is considered. Then, the
location of maximum strains in the remaining semi-infinite viscoelastic plate is determined,
and this algorithm can be repeated multiple times. The goal of this study is to determine
the influence of the problem parameters, particularly the ice viscosity, on the penetration of
waves into the plate with the formation of cracks and to predict the location of these cracks
and ”detachment” of finite pieces from the plate under the described conditions.

The problem is studied within the linear theory of hydroelasticity. At the initial stage
on region I with the free surface in Fig. 1 the incident wave is given in the form

ηin(x, t) = Aei(k0x−ωt), Φ
in
= −i Aω f 0(z) e

i(k0x−ωt) = φine−iωt,

where the overbar denotes dimensional functions, variables and wavenumber. Here, ηin is
the elevation of the free surface, t is time, A is the amplitude, ω is the frequency and k0 is
the wavenumber of the incident wave. The wavenumber and the frequency are satisfying the

dispersion relation for the free surface, Φ
in

is the corresponding flow velocity potential.

1.1 Formulation without ”detached” part
After factoring out e−iωt and switching to dimensionless variables, the governing equations
in region I will be

∇2
2(φ

in + φre) = 0 (x < 0, −1 < z < 0), (1)

(φin + φre)z − γ(φin + φre) = 0 (x < 0, z = 0), (2)

φin
z = φre

z = 0 (x < 0, z = −1), φre → −ia0f0(z)e
i(−k0x−t) + o(1) as x → −∞, (3)

where dimensionless functions and variables are denoted without an overbar. Here, φre is
the potential of the wave reflected from the plate, a0 is its amplitude, f0(z) = cosh(k0(z +
1))/(k0 sinh(k0)), ∇2

2 = ∂2/∂x2+∂2/∂z2, γ = ω2H/g, and g is the gravitational acceleration.
The length scale is H, the time scale is 1/ω, the free surface elevation scale is A, and the
velocity potential scale is AHω.

In the initial stage of the solution, the viscoelastic ice plate occupies the right half-axis,
corresponding to regions II and III in Fig. 1. In dimensionless variables, the governing
equations for the right half-axis are

−mγW + β(1− iε)Wxxxx +W = γΦ (x > 0, z = 0), Wxx = Wxxx = 0 (x = 0) (4)

∇2
2Φ = 0 (x > 0, −1 < z < 0), Φz = W (x > 0, z = 0), Φz = 0 (x > 0, z = −1), (5)

where W is the ice deflections, Φ is the velocity potential of the fluid flow beneath the plate,
m is the ratio of the mass of the ice plate per unit area to the mass of the fluid, β is the
dimensionless rigidity of the plate, and ε is the dimensionless retardation time within the
Kelvin-Voigt model.

The system of equations (4) – (5) is supplemented by boundary conditions as x → ∞,
which depend on the value of ε{

Φ → 0 as x → ∞ (ϵ ̸= 0),

Φ → s0g0(z)e
i(ξ0x−t) + o(1) as x → ∞ (ϵ = 0),

(6)



where s0 is the amplitude of the transmitted wave, ξ0 is the wavenumber for the given plate
corresponding to the frequency ω, and g0(z) = cosh(ξ0(z + 1))/(ξ0 sinh(ξ0)).

The final system of equations consists of equations (1) – (6), along with the matching
conditions at the vertical boundary between the free surface and the plate

φin + φre = Φ (x = 0, −1 < z < 0), (φin + φre)x = Φx (x = 0, −1 < z < 0). (7)

1.2 Formulation with ”detached” part
After determining the location of the absolute maximum strains in the plate, the introduced
intermediate section with the ”detached” part occupies region II (0 < x < B), where B is the
length of the ”detached” part. The semi-infinite plate now occupies region III. Equations (4)
– (5) are rewritten with the substitutions of (x > 0) and (x = 0) by (x > B) and (x = B),
respectively. Condition (6) remains unchanged. For the ”detached” part, its own system of
equations is introduced. In the case of broken ice, the system of equations in region II is

−mγW II +W II = γΦII (0 < x < B, z = 0), ∇2
2Φ

II = 0 (0 < x < B, −1 < z < 0), (8)

ΦII
z = W II (0 < x < B, z = 0), ΦII

z = 0 (0 < x < B, z = −1), (9)

where W II and ΦII are the corresponding deflections and velocity potential of the flow. In
the case of modeling an elastic or rigid plate in region II, equation (8) is replaced by an
equation and boundary conditions analogous to (4), but for (0 < x < B). The matching
conditions at the vertical boundaries between the free surface, intermediate ”detached” part
and the semi-infinite plate are

φin + φre = ΦII (x = 0, −1 < z < 0), (φin + φre)x = ΦII
x (x = 0, −1 < z < 0). (10)

ΦII = Φ (x = B, −1 < z < 0), ΦII
x = Φx (x = B, −1 < z < 0). (11)

The sought functions are ϕre, ΦII , Φ, W II , and W .

2 METHOD OF THE SOLUTION AND DISCUSSION
The solution to the problem for both formulations are constructed using the so-called vertical
mode method [3], or the eigenfunction method [4]. For the first part of the problem, the
potentials ϕre and Φ are represented as sums

φre = −i
∞∑
n=0

anfn(z)e
i(−knx−t), fn(z) =

cosh(kn(z + 1))

kn sinh(kn)
, (12)

Φ = −i

∞∑
n=−2

sngn(z)e
i(ξnx−t), gn(z) =

cosh(ξn(z + 1))

ξn sinh(ξn)
. (13)

Here, fn and gn are the vertical modes for the free surface and the viscoelastic plate, re-
spectively. The wavenumbers kn and ξn are complex-valued solutions of the corresponding
dispersion relations. For the free surface, there is one real root, k0, and a countable number
of purely imaginary roots, kn, n ≥ 1. For the elastic plate, there are two complex roots, ξ−1

and ξ−2, one real root, ξ0, and a countable number of purely imaginary roots, ξn, n ≥ 1. For



the viscoelastic plate, all these roots become complex with nonzero real and imaginary parts.
In this sense, the roots for the viscoelastic plate are similar to those for a porous plate, as
computed in [4]. Potentials in the form of (12) – (13) are solutions to the governing equations
from the previous paragraph. The principal coordinates an and sn are to be determined.

The vertical modes for the free surface are orthogonal. By truncating the sums in (12) –
(13) to the finite upper limit N , substituting these potentials into the conditions (7), mul-
tiplying by fm(z), and integrating the result over z, and taking into account the boundary
conditions (4) at x = 0, we arrive at a system of 2N +4 algebraic equations for the principal
coordinates an and sn in the case without ”detached” part. Second case is solved by the
same method. For the intermediate section in region II, a sum of two similar potentials is
introduced to match the solutions in regions I and III at the left, x = 0, and right, x = B,
vertical boundaries. This results in 4N +6 algebraic equations in the case of broken ice and
4N + 10 algebraic equations in the case of a finite viscoelastic plate. For modeling a rigid
plate or a plate with variable thickness in region II, the method of normal modes is applied,
see [5]. Results of some calculations for one ice plate are shown in Fig.2. These results show
that considered problem can be solved and analyzed by described method. Clear difference
between cases with and without viscosity is observed. More different examples of calculations
will be presented in the workshop.

Figure 2: Free surface evaluations and ice deflections. Here (a) and (c) are for a finite plate
in region II, (b) and (d) are for broken ice, (a) and (b) without damping, (c) and (d) with
damping.
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