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HIGHLIGHTS  
We employ the Brillouin–Villat criterion to determine the position of the free-surface detachment 
from an arbitrary shaped body. The fluid is assumed to be inviscid and incompressible. It is shown 
that the surface tension generates capillary waves that closely resemble those calculated by 
Crapper [1]. 
 
1. Introduction  
The separating flows of an inviscid liquid, accounting for surface tension, can be considered as a 
model of real flows at high Reynolds numbers, where wettability effects and the viscosity of the 
liquid are negligible. Such scenarios may arise in fluid-structure interactions at high speeds, 
including impact flows, cavity flows, and gliding flows. In these cases, a body interacts with a free 
surface flow that detaches at a specific point on the body. The theoretical study of the effect of 
surface tension effect on flow detachment has a long history starting from the works of Rayleigh 
and Kelvin (see [2], p. 455) with application to linear theory of water waves, and the work of 
Joukowskii (see [3], p. 549) who included surface-tension in the Bernoulli equation and derived a 
nonlinear boundary condition along the free streamline. He obtained a fully nonlinear solution for 
the flow past a bubble between two parallel walls. Later McLeod [4] considered the bubble 
problem in an infinite space. Crapper [1] found an exact solution for capillary waves propagating 
at the surface of an irrotational flow of infinite depth. Even though the classical Helmholtz–
Kirchhoff solution for free streamlines past a flat plate was obtained over a century ago, the flow 
detachment mechanism in the presence of surface tension remains poorly understood. The 
challenge arises from the infinite curvature predicted by potential flow theory at the sharp trailing 
edge, where detachment occurs. Even a tiny amount of surface tension leads to infinite pressure 
and velocity in the Bernoulli equation. The infinite pressure implies that the flow remains attached 
around the sharp edge. In our work, we study the effect of surface tension on the angle of the free-
surface detachment, and the shape of the free surface, in the case of Kirchhoff flow past a circular 
cylinder and a flat plate with rounded edges. We apply the integral hodograph method to derive 
the complex velocity potential and reduced the problem to a system of nonlinear equations with 
respect to the velocity magnitude on the free surface and solve it numerically using a collocation 
method. 
  
2. Formulation of the problem  
We study a two-dimensional irrotational free-streamline flow of an inviscid, incompressible fluid 
past a circular cylinder, as sketched in Figure 1a. Gravity is neglected, but surface tension is 
considered. The radius of the cylinder is denoted by R  and we introduce a Cartesian coordinate 
system 𝑋𝑋𝑋𝑋, with the origin at the center of the cylinder. The flow is symmetric with respect to the 
𝑋𝑋 −axis, which is aligned with the inflow velocity 𝑈𝑈. Flow separation occurs at point 𝑂𝑂 on the 
cylinder, forming a free-streamline 𝑂𝑂𝑂𝑂𝑂𝑂, which extends to infinity. Surface tension may generate 
waves on the free surface, extending downstream to infinity. To satisfy the radiation condition, we 
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apply the dynamic boundary condition on the segment 𝑂𝑂𝑂𝑂 of the free-streamline. On the remaining 
part of the streamline, 𝑇𝑇𝑇𝑇, the velocity magnitude remains constant and equal to the inflow velocity 
𝑈𝑈.  

 
Figure 1. (a) Sketch of the free-streamline flow past a circular cylinder, and (b) the parameter plane. 

We introduce the complex velocity potential, 𝑊𝑊(𝑍𝑍)  =  𝛷𝛷(𝑋𝑋,𝑌𝑌)  +  𝑖𝑖𝑖𝑖(𝑋𝑋,𝑌𝑌), where 𝛷𝛷(𝑋𝑋,𝑌𝑌) is 
the velocity potential and 𝛹𝛹(𝑋𝑋,𝑌𝑌) is the streamfunction, and 𝑍𝑍 = 𝑋𝑋 +  𝑖𝑖𝑖𝑖. The boundary-value 
problem for the velocity potential can be formulated as follows: 

∇2Φ = 0,       ∇2Ψ = 0     (1) 
in the liquid domain; 
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on the body surface 𝑌𝑌𝑏𝑏(𝑋𝑋) including AB′; and 
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+ 𝑝𝑝∞,     Ψ = 0,        0 < X < X𝑇𝑇,    𝑌𝑌 =  𝑌𝑌(𝑋𝑋),  (3) 

which is the dynamic boundary condition at the free-streamline, 𝑌𝑌 =  𝑌𝑌(𝑋𝑋). Here, 𝑉𝑉 =  |∇Φ| is 
the velocity magnitude, 𝑝𝑝(𝑋𝑋) is the hydrodynamic pressure on the liquid side of the free-streamline 
and 𝑝𝑝∞ is its value at infinity; 𝜌𝜌 is the density of the liquid; 

𝑝𝑝 = 𝑝𝑝∞,  Ψ = 0,        X𝑇𝑇 < X < ∞,    𝑌𝑌 =  𝑌𝑌(𝑋𝑋),    (4) 
which is the dynamic boundary condition on the remainder of the free-streamline; 
and the far-field condition 

∇Φ → 𝑈𝑈,  |𝑋𝑋2 + 𝑌𝑌2| → ∞.      (5) 
To complete the formulation of the boundary-value problem (1) – (5), an equation for the 
hydrodynamic pressure at the free-streamline is needed. The surface tension affects the pressure 
jump across the free-streamline according to the Laplace-Young condition: 

𝑝𝑝 − 𝑝𝑝𝑐𝑐 = 𝜏𝜏𝜏𝜏,      (6) 

where 𝑝𝑝𝑐𝑐 is the pressure inside the cavity, 𝜏𝜏 is the coefficient of surface tension and 𝜅𝜅 is the 
curvature of the free-streamline. In Kirchhoff-type flows with an infinite cavity, the curvature of 
the free streamlines approaches zero at infinity; therefore, the pressure within the cavity is the 
same as the pressure at infinity, 𝑝𝑝𝑐𝑐  =  𝑝𝑝∞. Using the integral hodograph method, which is based 
on the integral formula for solving mixed boundary value problems for complex functions, the 
expression for the complex velocity is derived:  
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where 𝛿𝛿𝑏𝑏(𝜉𝜉) and 𝑣𝑣(𝜂𝜂) are the functions of the slope of the body and velocity magnitude on the 
free surface, respectively. The derivative of the complex potential, derived through the conformal 
mapping of the first quadrant onto a strip in the ww-plane, is expressed as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐾𝐾𝐾𝐾,      (8) 
where 𝐾𝐾 being a real constant.  
Applying the kinematic and dynamic boundary conditions yields the following integral equations, 
expressed in terms of the functions 𝛿𝛿𝑏𝑏(𝜉𝜉) and 𝑣𝑣(𝜂𝜂): 
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The Brillouin-Villat criterion [3,5] was developed for free-streamline separation without 
considering surface tension. However, since the criterion has a geometric nature – stating that the 
free-streamline should not cross the body – it can also be applied to determine the free-streamline 
separation in the presence of non-zero surface tension. Specifically, this means that  
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where 𝑠𝑠𝑏𝑏 is the arc length coordinate on the body. By taking the derivative of the magnitude of the 
complex velocity (7) with 𝜁𝜁 = 𝜉𝜉 and differentiating it with respect to 𝜉𝜉, the above equation is 
obtained  
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3. Results.  The lower part of the flow past a circular cylinder is shown in figure 2 for various 𝑊𝑊𝑊𝑊 
numbers, including the case for 𝑊𝑊𝑊𝑊 = ∞, corresponding to zero surface tension. The predicted 
detachment angle for this case is γ = 55.03°, which matches the known value [2]. For 𝑊𝑊𝑊𝑊 = ∞, 
the slope of the free surface decreases monotonically from 𝛾𝛾 at the detachment point to zero at 
infinity. In this case, the velocity magnitude along the entire free surface, including the detachment 
point, remains constant, 𝑣𝑣(𝜂𝜂)  ≡  𝑣𝑣∞  =  1. 

 
Figure 2. Free surface shapes for various Weber numbers (𝑊𝑊𝑊𝑊 = 𝜌𝜌𝑈𝑈2/𝜏𝜏). 



When 𝑊𝑊𝑊𝑊 < ∞, the free surface exhibits capillary waves, with both the wavelength and amplitude 
increasing as surface tension increases. The truncation region 𝑇𝑇𝑇𝑇, where the velocity remains 
constant and equals the velocity at infinity, is not shown in Figure 2. In the right-hand figure, a 
dashed line crosses the free surface at points where the velocity equals 1, while a dotted line 
represents the flow’s axis of symmetry. It can be seen that the intervals below the dashed line, 
where the velocity magnitude 𝑣𝑣 > 1, are shorter than those above the line, where 𝑣𝑣 < 1. This 
characteristic of capillary waves was revealed by Crapper [1]. For 𝑊𝑊𝑊𝑊 = 1, the slope of the dashed 
line starts off negative but gradually approaches zero at infinity. At 𝑊𝑊𝑊𝑊 = 0.6, the slope is nearly 
zero from the outset. At 𝑊𝑊𝑊𝑊 = 0.4, the slope of the dashed line becomes positive but also gradually 
tends to zero at infinity. For 𝑊𝑊𝑊𝑊 =  1, the first wave crest almost touches the flow symmetry axis 
(dotted line). As 𝑊𝑊𝑊𝑊 decreases to 0.6, the wavelength and amplitude increase further, causing the 
free surface to cross the symmetry line. This situation is physically impossible for flow around a 
cylinder because the upper and lower free streamlines would collide behind the cylinder. However, 
such a flow could still occur if it originated from a semi-infinite solid plate with a rounded trailing 
edge. 

       
Figure 3. Flow past a flat plate with the rounded trailing edge for (a) 𝑊𝑊𝑊𝑊 = 3, (b) 𝑊𝑊𝑊𝑊 = 1. 

The solution method capable to investigate the flow detachment from a flat plate with rounded 
edges. The width of the plate is given by 𝐻𝐻 = 2(𝐿𝐿 + 𝑅𝑅), where 𝐿𝐿 is the length of the flat portion, 
and 𝑅𝑅 is the radius of the rounded edges of the plate. The Weber number is based on the total width 
𝐻𝐻 instead of 𝑅𝑅.  In the special case where the radius 𝑅𝑅 →  0, the configuration approaches to a 
flat plate with sharp edges. Figure 3 shows the free surface shape for various edge radii for (a) 
𝑊𝑊𝑊𝑊 = 3 and (b) We = 1. For different radii, the wavelength remains approximately constant, while 
the wave amplitude increases as the radius decreases, for both 𝑊𝑊𝑊𝑊 = 3 and 𝑊𝑊𝑊𝑊 = 1. Additionally, 
the wavelength increases as the Weber number decreases. 
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