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Highlights
• linear and nonlinear wave train,
• spatial/temporal variations of the pressure field and its spatial derivatives,
• collinearity of the pressure gradient and one eigenvector of the pressure Hessian matrix.

The present abstract is concerned with two dimensional wave trains that propagate in a domain
over a flat bottom. In the light of recent analyses of the temporal and spatial variations of the
pressure field beneath the free surface (see [1] and [2]), we examine what information is available
along the lines defined by the collinearity of the pressure gradient and one of the two eigenvectors
of the pressure Hessian matrix. It is shown that these two vectors are collinear along a line that
always intersects the free surface; it is called the backbone line. Several backbone lines can be
identified in the fluid domain. They are always attached to the crests of a wave train. So far we
have been mainly interested in the backbone line associated to the main crest, that can possibly
break. Here we extend our analysis to the entire wave train and we start from the linear case.

As a first step the simple linear case with monochromatic wave is investigated. It is described
in a cartesian coordinate system (x, y). The wave has an amplitude A, wave number k, and it
propagates along the positive x axis over a constant water depth h. Given the velocity potential
φ that describes this Airy wave, the pressure gradient follows from the linearized Euler equation
projected on a Cartesian normalized vectors (~x, ~y), yielding the components p,x = −ρφ,xt and
p,y = −ρφ,yt − ρg (the fluid density is ρ and the acceleration of gravity is g). The elements of
pressure Hessian matrix are

H =

(

p,x2 p,xy
p,xy p,y2

)

, (1)

where the second derivatives are given by

p,x2 = −ρφ,x2t = ρk2φ,t, p,y2 = −ρφ,y2t = −ρk2φ,t, p,xy = −ρφ,xyt (2)

It is worth noting that the mean curvature of the pressure (this is also its Laplacian) is zero
throughout the fluid. This is not true if the wave is nonlinear. The eigenvalues λ of the matrix H
are determined from

det(H− λI) = 0, ⇒ λ2 = p2,xy − p,x2p,y2 (3)

It is easy to check that the RHS in (3) is positive since ∆p = p,y2 + p,x2 = 0 (true only for linear
wave). The eigenvectors ~e follow from the equation H~e = λ~e, yielding

~e = −p,xy~x+ (p,x2 − λ)~y (4)

The eigenvectors can be normalized. It should be noted that their orientation is arbitrary. It is
easy to show that the two eigenvectors are orthogonal.

We are interested in the eigenvalue that is positive; it is denoted λ1 =
√

p2,xy − p,x2p,y2 and
its associated eigenvector is ~e1 = (ex, ey). Correspondingly with the nonlinear configuration (see



[1]) we look for the points where the pressure gradient is collinear to the eigenvector ~e1, in other
words the points where the following quantity changes sign

exp,y − eyp,x = 0 (5)

By using (3) and (4), this equation can be turned into

p,xy
(

p,xyp
2

,y + 2p,xp,yp,x2 − p,xyp
2

,x

)

= 0 (6)

In general the term into bracket cannot vanish, it remains p,xy = 0. For a monochromatic Airy
wave, it is easy to show that the condition p,xy = 0 is met beneath the crests and the troughs.
In addition the eigenvector cannot be zero, hence ey 6= 0. By using (4) it is obtained p,x2 < 0,
which means that the free surface elevation η(x, t) verifies η,x2 < 0; consequently this is a crest.

We finally check that the two vectors ~e1 and ~∇p are collinear, that is to say the following equality
is verified

|exp,x + eyp,y| = ||~e1|| · ||~∇p|| (7)

where ex = 0 and p,x = 0 along the backbone line. We can conclude, for a monochromatic Airy
wave, that the backbone lines are vertical straight lines joining each crest to the bottom. If the
water depth is infinite the backbone lines are semi infinite lines. In the developments above,
the expression of the velocity potential has not been explicitely required. As a consequence for
irregular waves the same conclusion still holds. The analysis exposed in [4] can be revisited.
Indeed it is shown how the vertical pressure gradient reaches the Stokes’ limit p,y = −1

2
ρg when

a crest is close to breaking (see [5]).
The next step is the analysis of true nonlinear wave trains. For that a Boussinesq model

(see [3]) yields physically reasonable free surface profiles and the corresponding distributions of
velocity potential. Those are used as initial conditions for the numerical code FSID that solves
the fully nonlinear free surface boundary conditions in potential theory. The wave trains selected
were studied in [2], in particular to produce a focused wave and thus analyze the triggering of
the breaking wave. Here we are concerned with a standard wave train well before breaking. The
figure below shows the free surface profile at a given instant of the simulation, instant close to the
initial time.
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It is observed here that from each of the main crests, emanates a backbone line that reaches the
bottom. At these points on the bottom, the horizontal pressure gradient vanishes or changes
sign. This characteritics can be used to detect a starting point of the backbone line and then
the whole backbone line can be computed iteratively. However, some of the backbone lines stop
inside the fluid. That is why the computation of the pressure and its derivatives must be achieved



with much accuracy everywhere in the fluid and especially at the free surface. In particular the
discrete definition of the free surface must not suffer from pathology like sawtooth instabilities
(and the necessary smoothing) that would greatly jeopardize the required accuracy. In that sens
the desingularized technique implemented in the present numerical software, allows to reach this
accuracy. Indeed the computation of the velocity potential follows from a simple summation of
the influence of source singularities located outside the fluide domain. The intensities of these
singularities are computed from the Dirichlet condition at the free surface. The temporal and
spatial derivatives of the velocity potential are hence computed with the same accuracy than for
velocity potential itself. Some care must be only paid to the computation of the time derivative
of the intensities of the singularities. The numerical strategy is exposed in [6].

A local analysis of the pressure field at the tip of one of these backbone lines inside the fluid
shows that the end point is embedded in a region where the Gaussian curvature changes sign
and therefore becomes positive. A closer view of the pressure gradient field is shown below. It
corresponds to the tip indicated with an arrow in the first figure above.
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This region surrounding the tip is tiny and roughly circular with diameter about 0.6mm to be
compared to the water depth h = 0.7m. Inside this region, the Gaussian curvature is slightly
positive. This means that the two eigenvalues of the Hessian matrix are both negative. As a
consequence the shape of the surface made by the pressure (in the coordinate system (x, y) of
the plane flow) can be approximated with an elliptic paraboloid which is tangent to the plane
that contains the pressure gradient. Two vector fields are superimposed: the pressure gradient
and one of the eigenvector of the Hessian matrix. This eigenvector is associated to the eigenvalue
that can change sign in the fluid. In the small area under consideration, the pressure gradient is
mainly directed vertically downwards. That means that the fluid dynamics is essentially governed
by the hydrostatics. However the curvature of the pressure varies locally. Indeed the eigenvector
has a discontinuous direction below the tip. Since one of the curvature radius of pressure changes
sign along the green line, the pressure is very flat in the closed region. A deeper analysis should
provide more insights into this spatial variation. However it is clear that these variations are very
weak.

The same simulation leads to a focused wave which does not break. However a slight increase
of the initial potential energy (by increasing the initial free surface deformation) would lead to a
breaking wave. This has allowed to perform a parametric analysis of the onset of breaking wave
(see [7]). Here we consider the state of the focused wave when the main crest reaches its highest
amplitude and kinematics. The figure below shows the free surface profile at this precise instant
of the simulation.
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The same characteristics can be observed as before. The main difference with the previous instant
concerns the average slope of the backbone line connected to the main crest. Indeed it is now
slighly negative. This characterizes a crest which is deccelerating. This is confirmed by examining
the spatial variation of the horizontal Lagrangian acceleration at the free surface. This variable
is plotted in green in the figure above and its range of variation (divided by the acceleration of
gravity) is read on the right vertical axis. It is worth noting at the crest the sharp change of
sign of the horizontal acceleration; the fluid deccelerating on the leaside of the wave. This is
consistent with the observations of [8] and the fact that the phase speed decreases to a value close
to the horizontal fluid velocity (at the crest) which otherwise reaches its maximum value. It is
also shown in [7] that along the backbone line linking the bottom to crest, the vertical pressure
gradient (made nondimensional with ρg) almost reaches a minimum value −1/2 slightly below the
crest. This critical threshold also corresponds to the Stokes’ limit of 120o as shown by [5].
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