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HIGHLIGHTS 

 To explain the anomalous downshifting observed in our experiments, a Raman Scattering Term 

is introduced into the Nonlinear Schrödinger Equation (NLS). The Raman Scattering Term does 

not change the total energy of the waves but their momentum, providing a potential mechanism 

for the observed spectral downshifting. 

1 Introduction 

The spectral transition to the low-frequency side of the wave spectrum, known as spectral 

downshift, occurs in ocean due to nonlinear effects. In open water, through wind-wave growth and 

four-wave resonance, spectral downshift is ubiquitous (Phillips, 1958) [1]. Sea ice exponentially 

dissipates waves with frequency-dependent attenuation properties exp⁡(−𝐾𝑓𝑛𝑥) , causing a 

downshift because low-frequency waves survive longer. However, the observational results of 

waves propagating under sea ice in the Okhotsk Sea by Waseda et al. (2022) [2] revealed 

anomalous spectral downshift that cannot be explained by wave attenuation alone, as the low-

frequency component grows. Currently, no theory exists to explain this phenomenon. 

To confirm the existence of nonlinear energy exchange in waves propagating under sea ice and 

unravel its mechanism, we conducted both tank experiments and numerical calculations. 

2 Modulation Instability and Numerical Calculation 

2.1 Modulation instability (MI) 

Benjamin & Feir (1967) [3] discovered that Stokes waves are unstable to the growth of sideband 

waves (sideband waves; are two wave components with frequencies slightly higher/lower than the 

carrier wave frequency). The initial growth rate β of the modulational wave train, when we 

introduce 𝛿̂ = 𝛿/𝑎𝑘, is given by: 

𝛽 =
𝑑(𝑙𝑛(𝑎))

𝑘𝑑𝑥
= (𝑎𝑘)2⁡𝛿̂√2 −⁡𝛿2 

 

2.2 Nonlinear Schrödinger Equation (NLS) 

Expressing the time evolution of surface elevation by using the complex amplitude 𝐴(𝑥, 𝑦, 𝑡) of 

the water surface as 𝑅𝑒[𝐴(𝑥, 𝑦, 𝑡)exp⁡(𝑖(𝑘𝑥 − 𝜔𝑡)] , the temporal evolution of A, under the 

assumption of a narrow frequency bandwidth 𝑂(Δ𝜔/𝜔) = 𝑂(𝑎𝑘), is given by the following 

Nonlinear Schrödinger Equation (NLS): 
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If we solve this equation numerically and calculate spectrum, due to the symmetricity of terms of 

NLS, symmetric growth will be observed for the upper and lower sidebands⁡𝑓0 ± ∆𝑓(and 𝑓0 ±
2∆𝑓). Alberto et al. (2023) [4] modeled spectral downshifting under sea ice through numerical 

simulations using a dissipative nonlinear Schrödinger equation (d-NLS) with a frequency-

dependent dissipation term added to the NLS. 

3 Experiment in Wave-Ice Tank 

3.1 Experimental Methods 

The experimental facility is in Kashiwa Campus, the University of Tokyo, and was constructed 

by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). Its name is Wave-

Ice Tank. To measure the generated waves, four gauges were used and ice fences to protect sensing 

wires in the wave height gauges were installed. 

Ice was created in the tank, and a modulational wave train (wave train subject to modulational 

instability), consisting of a carrier wave and upper/lower sidebands. In the process of creating ice 

in the tank, the room temperature was lowered for freezing while wave generation was performed 

simultaneously. We call this procedure “wave-induced ice formation”.  

Through this procedure, ice particles, depicted in Figure 2, are generated in the tank. In terms of 

actual sea ice classification, this ice is akin to an "ice rind", and upon completion of the ice 

generation process, the ice particles uniformly cover the surface of the tank. 

 

 

 

 

 

 

 

 

 

Figure 2. Generated ice in Wave-Ice Tank 

 

3.2 Experimental Results 

The spectrum and energy of each peak for the modulational wave train are illustrated in Fig. 3. 

This wave train shows temporary sideband growth due to modulation instability when the length 

of the tank is sufficiently large. However, since our tank was only 8 meters long, no spectral 

changes due to modulation instability were observed. 

In our experiment, the amplitude of waves is attenuated due to the presence of ice. Figure 3(a) 

shows the power spectrum plotted at each gauge position. The shape of the spectrum changes 

significantly between the third gauge and the fourth gauge. To determine whether this spectral 

change can be explained solely by attenuation caused by the presence of ice or not, we plot the 

energy of each wave component individually as Figure 3(b). 

In this figure, we can observe that the component 𝑓 − 2Δ𝑓 is growing. Therefore, it is evident 

that through nonlinear energy transfer, energy from the carrier wave (or upper sideband) is being 

transferred into waves with frequencies lower than the carrier wave. This is clear evidence of 

nonlinear energy transfer occurring while waves propagate under ice. 



However, the issue at hand is why nonlinear energy exchange is occurring. Modulation instability 

is known to result in spectral downshift on the scale of several tens of waves, but the experimental 

results indicate downshifting in this experiment is on the scale of about one wave.  

 

Figure 3. Experimental result of modulational wave train, (a)powerspectrum (b)energy change in each wave.  

This modulational wave train consists of lower sideband 𝑓 − Δ𝑓 = 1.07𝐻𝑧, carrier wave 𝑓 = 1.2𝐻𝑧 and upper 

sideband 𝑓 + Δ𝑓 = 1.33𝐻𝑧. (c) is the numerical calculation by NLS+dissipation+Raman Scattering term 

 

3.3 Numerical Calculation by NLS with dissipation  

To check if the downshifting in our experiments is from the evolution of waves by modulational 

instability and dissipation that higher frequency component selectively vanishes, we conducted 

numerical calculations by using NLS which dissipation is implemented. The method to solve NLS 

is based on Lo&Mei (1985) [5] However, we cannot see the evolution of 𝑓 − 2Δ𝑓 component 

around the center of the tank. Therefore, modulational instability and dissipation cannot explain 

downshifting in this experiment.  

4 Raman Scattering Term 

4.1 Introduction of Raman Scattering Term and Comparison to the Experimental Results 

In the field of optics, NLS is used to calculate the spectral evolution of lights in fibers, and the 

mathematical properties of this term are also discussed [6]. One of the major differences between 

NLS in oceanography and optics is the existence of Raman Scattering Term which causes spectral 

upshifting and downshifting. 

In our experimental results, very fast spectral downshifting occurs, and previous studies cannot 

explain this fast downshifting. Therefore, we must implement something new to NLS to 

understand the mechanism behind the experimental results. We artificially added Raman 

Scattering Term to NLS like below. 
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We calculated NLS with Raman Scattering Term and dissipation as shown in Figure 3(c). 

 In this calculation, the spectral evolution of 𝑓 − 2Δ𝑓  is enhanced. Therefore, spectral 

downshifting might be explained by adding the Raman Scattering Term to the NLS.  

  



4.2 Physical Meaning of Raman Scattering Term in Ocean Wave 

We calculated the spectral evolution of the modulational wave train by using NLS with only 

Raman scattering term but without dissipation to investigate how the Raman scattering term affects 

the energy and momentum of waves. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Numerical calculation of NLS+Raman Scattering Term, (a) Powerspectrum of waves (b) plot of 𝐸 and 

𝑀 × 𝑐0, here 𝐸 and 𝑀 is total energy and momentum respectively, 𝑐0 is the phase speed of the carrier wave. 

 

In figure 4(a), wave energy continuously and permanently cascades to lower components. 

Therefore, Raman scattering term causes permanent downshifting to wave spectrum. 

But why does the Raman scattering term cause spectral downshifting? The answer lies in the 

change in momentum. Tulin & Waseda (1999) [5] showed that spectral downshifting during 

wave breaking occurs due to an imbalance between energy loss and momentum loss as equation 

below.  
𝜕

𝜕𝑡
(𝐸−1 − 𝐸+1) = −

𝐷𝑑𝑖𝑠 − 𝑐0𝑀̇𝑑𝑖𝑠

Δ𝑓/𝑓
 

Here, 𝐷𝑑𝑖𝑠 and 𝑀𝑑𝑖𝑠 is energy and momentum loss. We have confirmed that in calculations of the 

standard NLS without the Raman scattering term, energy and momentum take almost the same 

values. The addition of the Raman Scattering Term corresponds to momentum change, as shown 

in the figure 4(b). The Raman scattering term does not change the total energy of the waves but 

does change their momentum. Therefore, based on the equation from Tulin & Waseda (1999)[5], 

it can be understood that the Raman scattering term, which increases momentum, contributes to 

spectral downshifting. 

Energy attenuation caused by sea ice can be applied to the NLS through the implementation of a 

damping term, and momentum changes can be applied through the implementation of the Raman 

Scattering Term. Thus, if the fast spectral downshifting due to the presence of sea ice is a 

phenomenon caused by energy and momentum loss, similar to wave breaking, it may be possible 

to reproduce our experimental results using the NLS with the Raman Scattering Term. 
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