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1. Introduction

The propagation of gravity waves over variable bathymetry has been extensively studied over
the past 40 years [1]. In the linear regime, several theoretical, numerical, and experimental
studies have demonstrated the anisotropic nature of effective wave propagation over rapidly
varying periodic bathymetries in the long-wavelength/shallow-water regime [2, 3]. More
recently, this topic has gained attention in the context of metamaterials for coastal protection
[4, 5, 6]. However, solitons -which can cause significant damage to offshore structures and
coasts (e.g., rogue waves) - are inherently nonlinear, and their interaction with variable
bathymetry remains poorly understood. This study revisits the problem of nonlinear wave
motion on the free surface of a liquid column with a periodically varying bottom [7, 8, 9].
We first derive the corresponding anisotropic homogenized Boussinesq and KdV equations
and then analyze how soliton properties, such as celerity and spatial extent, are modified by
the presence of rapidly varying bathymetry.

2. Non-linear gravity wave propagation over a periodic bathymetry

We consider the nonlinear propagation of water waves over a structured ridge with periodicity
ph,, resulting in water depths alternating between h, and h,, see figure 1. Assuming an
inviscid, incompressible fluid in irrotational motion, the velocity u and its associated velocity
potential ¢ satisfy the Laplace equation

div*u(r,z,t) =0, wu(r,zt) = V*(r,z,1), (1)

where t is time, and r = (z,y) denotes the horizontal coordinates. The equations above are
complemented by the dynamic and kinematic boundary conditions at the free surface, 7.e.
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where ¢ is the gravitational constant, and the gradient operators are defined as Vf =
Oyfe;+ 0, fe, and V¥ f =V f 40, fe,. A vanishing normal velocity condition, u-n =0,
is imposed on the rigid walls.
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Figure 1: Three-dimensional propagation of nonlinear gravity waves with typical wavenumber k
and amplitude a, over a sea bottom at depth h, supporting a rapidly varying bathymetry consisting
of a periodic array of plates with height h = hy, — h,, and periodicity ph,.

3. Main results of the study

Using an asymptotic multi-scale approach up to the third order, we analyze the problem
under (i) shallow-water, (ii) long-wavelength, and (iii) weakly nonlinear assumptions. This
method reduces the full three-dimensional problem to a two-dimensional one at the free
surface, employing a homogenization technique recently proposed for nonlinear water wave
propagation over a step-like bathymetry [11].

Anisotropic effective Boussinesq equations. We derived effective equations govern the
homogenized surface wave elevation n(r,t) and velocity at the free surface u(r,t), averaged
over the periodic cell. These quantities satisfy a Boussinesq-type equation of the form
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where h is the average water depth and (O, Mgy Ay, Ay, iy, dyyy) are effective non-dimensional
effective parameters characterizing nonlinear anisotropic propagation. For a flat bathymetry
of constant depth h,, these parameters reduce to h = hy, @y = ny = 1, dypy = dpy = dyy =
d,, = 1/3, resulting in the classical Boussinesq equation for flat bathymetry

3

% +div [(ho + n)u] + %div [Au] =0,

ou

ot

X (4)
+9Vn+ §V(u-u) =0,

The effective parameters are given by the resolution of linear static problems, of the Poisson
type, which depend only on the geometry of the unit cell, as it is classical in asymptotic
homogenization.



Anisotropic effective KdV equation and solitons. We now look at unidirectional
wave propagation along ex forming an angle # with e,, with X being the position in this
direction. The anisotropic KdV equation governing the propagation in this direction is given

by
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resulting in the closed-form equation of an effective soliton of amplitude 7y and celerity wug
given by

3 1/2
n(X,t) =mo sech? { (47;723> (X — uet)} , Ug = Cy (1 + 2”—;;@) ) (6)
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which depend on parameters that are given explicitly as functions of the effective coefficients
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Figures 2 and 3 highlight the significant impact of variable bathymetry on the soliton
shape: its thickness, or spatial extend, and velocity ug in (6). We considered a periodic
bathymetry made of plates with vanishing thickness. By doing so h = h, which leaves us
with two non-dimensional geometrical parameters being the rescaled periodicity of the array
p and smaller water depth & = h,,/h,, due to the bathymetry (£ = 1 corresponds to flat
bathymetry). Both the spatial extent and velocity of solitons increase with increasing p or
&. The anisotropic nature of solitons is particularly evident in their directional dependence
(0 = 0 along = across the plates and § = 7/2 along y parallel to the plate in figure 3),
emphasizing the role of structured bathymetry in wave dynamics.

0 P 10 0 P 10
Figure 2: Influence of the periodicity p and minimum water depth £ on the soliton thickness

1/2
by = (43;)]1;2) and velocity ug (0 = 0, ho = 1072 m, 79 = 0.3hg, g = 9.8 m.s~2).
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Figure 3: Soliton shapes n(x,t) propagating along = (§ = 0), at ¢ = 0 (solid lines) and t = 1 s
(dashed lines), from (6). The grey lines show the reference soliton shape for flat bathymetry and
corresponding to propagation for 6 = /2.
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