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Highlights: The fundamental issue of defining a boundary-integral equation within a linear analysis of potential
flow around a ship that steadily advances in calm water is examined. Six boundary-integral flow representations,
associated with five alternative linear flow models, are given. These six alternative flow representations include
a remarkably simple new boundary-integral equation that does not involve the flow potential at the waterline.

The length and the speed of the ship are denoted as L and V, g is the acceleration of gravity, and F ≡ V/
√
gL

denotes the Froude number. The flow potentials at points ξ ≡ (ξ, η, ζ ≤ 0) and x ≡ (x, y, z ≤ 0) associated with
the Green function G ≡ G(ξ ,x) that satisfies the Kelvin-Michell linear boundary condition Gζ +F 2Gξξ = 0 at
the free-surface plane ζ = 0 are denoted as ϕ ≡ ϕ(ξ) and φ ≡ ϕ(x) hereafter. The ζ axis is vertical and points
upward, and the ξ axis lies along the straight path of the ship and points toward the ship bow. The coordinates
ξ , x and the flow potential ϕ are nondimensional with respect to L and g.

1. The NK (Neumann-Kelvin) and NM (Neumann-Michell) flow representations

The first of the six alternative boundary-integral flow representations considered in this study is the classical
Neumann-Kelvin (NK) flow representation, which is obtained via a straightforward application of Green’s
fundamental identity to the Green function G that satisfies the Kelvin-Michell linear free-surface boundary
condition and the flow potential ϕ in the region bounded by the undisturbed free surface ΣF outside the mean
wetted ship-hull surface ΣH . The NK flow representation is expressed in [1] in the weakly-singular form

φ = φH +F 2

∫
Γ

dη [ (φ− ϕ)Gξ +Gϕξ ] where (1)

φH ≡ φH(x) ≡
∫

ΣH

da(ξ)
[
G qH(ξ) + (φ− ϕ) n ·∇ξG

]
with qH ≡ n ·∇ξϕ . (2)

The unit vector n ≡ n(ξ) ≡ (nx, ny, nz) in (2) is normal to the ship-hull surface ΣH and points outside the
ship. The ship-hull flux qH in (2) is presumed known in the NK boundary-integral flow representation (1) and
the alternative flow representations considered further on. In particular, the ship-hull flux qH in (2) is given by
qH = F nx if the influence of the viscous boundary layer is ignored. ΣH in the hull-surface integral (2) associated
with the classical NK linear flow model represents the mean wetted ship-hull surface below the undisturbed free-
surface plane ζ = 0. However, ΣH is taken as the wetted hull surface below the actual free surface ζ ≈ F ϕξ
in the alternative linear flow model—called Neumann-Michell (NM) flow model—proposed in [2]. Indeed,
the difference between these two wetted hull surfaces yields a linear contribution to the hull-surface potential
φH defined by (2) that arguably may not be ignored in a consistent linear flow model. This linear contribution
is shown in [1,2] to cancel out the term Gϕξ in the line integral around the ship waterline Γ in the NK flow
representation (1). Thus, the NK flow representation (1) yields the NM flow representation

φ = φH +F 2

∫
Γ

dη (φ− ϕ)Gξ . (3)

The NK integro-differential equation (1) and the NM integral equation (3) both include a line integral around
the ship waterline Γ that involves the flow potential ϕ.

2. The basic RW (rigid-waterplane) flow representation

In the particular case of a closed body, with surface ΣH , that is entirely submerged (at a large or small depth)
below the free surface, the classical NK boundary-integral flow representation (1) becomes

φ =

∫
ΣH

da
[
G qH + (φ− ϕ) n ·∇ξG

]
. (4)

A special closed submerged body ΣH ≡ ΣH− ∪ΣHi associated with an alternative linear flow model—called rigid-
waterplane (RW) flow model—is considered in [1,3,4] . In this flow model, a narrow band −δ < ζ ≤ 0 of
a free-surface piercing hull surface ΣH is ignored, and the resulting truncated hull surface ΣH− is closed via a
rigid horizontal lid ΣHi where the Neumann boundary condition ϕζ = 0 holds. The portion of the free-surface
plane ζ = 0 above the lid ΣHi is denoted as ΣFi . In the limit δ → 0, one has ΣH− → ΣH and ΣHi → ΣFi . The
boundary-integral flow representation (4) then becomes

φ = φH + φFi where φFi ≡
∫

ΣF
i

dξ dη (φ− ϕ)Gζ = F 2

∫
ΣF

i

dξ dη (ϕ− φ)Gξξ (5)



and φH is given by (2). The last expression for φFi in (5) follows from the Kelvin-Michell free-surface boundary
condition. The RW flow representation (5) involves a surface integral over the ship waterplane ΣFi instead of a
line integral around the ship waterline Γ and yields an integral equation that determines the flow potential ϕ
over the extended hull surface ΣH ∪ ΣFi .

3. A 2D flow restriction and the RW-hw and RW-h flow representations

If the flow within the thin water layer −δ < ζ ≤ 0 between the rigid lid ΣHi and the waterplane ΣFi is assumed
to be two-dimensional, the waterplane integral in (5) can be expressed [1,4] as the waterline integral

φFi = −
∫

Γ

d` AΓ where AΓ≡ Gζ qΓ + (φ− ϕΓ) ν ·∇ξG
ζ with qΓ ≡ ν ·∇ξϕ

Γ . (6)

Moreover, ζ means integration with respect to ζ , and the unit vector ν ≡ (νx, νy, 0) is normal to the waterline
Γ and points into the water, like the unit vector n ≡ (nx, ny, nz) normal to ΣH . The flow representation (5)
with φFi given by (6) involves both a surface integral over the ship hull surface ΣH and a line integral around
the ship waterline Γ, and accordingly is identified as the RW-hw flow representation. The remarkable
similarity between the integrands of the waterline-integral representation (6) of φFi and the hull-surface integral
representation (2) of φH suggests that numerical cancellations between the components φH and φFi in the RW
flow representation (5) can be expected, as is readily verified for a wall-sided ship-hull surface ΣH. Specifically,
the waterline integral (6) can be expressed as the hull-surface integral

φFi = −
∫

ΣH

da ∂ζ
(
EAΓ

)
= −

∫
ΣH

da
(
EAΓ

ζ + EζA
Γ
)

where E ≡ e−9 ζ2/d2∗ (7)

and d∗ is a fraction of the nondimensional draft D/L of the ship. The function E(ζ) vanishes rapidly as ζ → −∞
and one has E(0) = 1 and Eζ(0) = 0 . Expressions (2) and (7) yield

φH + φFi =

∫
ΣH

da AHΓ where AHΓ ≡ qHG+ (φ− ϕ) n ·∇ξG− EA
Γ
ζ − EζAΓ . (8)

Expressions (8) for AHΓ and (6) for AΓ with the relations E = 1 and Eζ = 0 at Γ yield AHΓ = 0 at Γ. Thus, the
integrand AHΓ of the surface integral (8) vanishes at the ship waterline Γ, which implies numerical cancellations
between the hull-surface integral φH and the waterplane integral φFi in the RW representation (5). The RW
flow representation φH+φFi with φFi given by (6) only includes a surface integral over the ship hull surface ΣH ,
although the integrand AHΓ in (8) involves the flow potential ϕΓ at the waterline Γ, and is then identified as the
RW-h flow representation.

4. A no-flow restriction and the NN (Neumann-Noblesse) flow representation

The direction of the unit vector n normal to the body surface ΣH− ∪ ΣHi defined in the RW flow model is
discontinuous along the waterline Γ, and the flow velocity can then be unbounded at Γ. An unbounded flow
velocity at Γ can arguably be avoided if the ‘no-flow restriction’ ϕ(ξ) ≡ 0 is imposed within the thin sheet of
water above the rigid lid ΣHi . The cancellations between the contributions of the ship-hull surface ΣH and the
ship-waterplane ΣFi noted in section 3 arguably also suggest that the restriction ϕ(ξ) ≡ 0 if ξ ∈ ΣFi may be
reasonable. Moreover, the assumption that the thin sheet of water above the rigid lid ΣHi is a ‘dead-water’
region may be argued to imply that the flows around the free-surface piercing open ship-hull surface ΣH and
the related closed body surface ΣH− ∪ ΣHi are practically identical. Thus, the RW linear flow model with the
crucial additional waterplane restriction ϕ(ξ) = 0 if ξ ∈ ΣFi in the limit δ = 0 is considered. As is explained in
[1] , the restriction ϕ = 0 at the ship waterplane ΣFi does not necessarily imply that ϕ = 0 along the waterline Γ
or at the free surface ΣF outside Γ because the flow potential ϕ(ξ, η, ζ = 0) may be (and likely is) discontinuous
across Γ. The basic RW flow representation (5) with the waterplane constraint ϕ = 0 becomes(

1− CΓ
)
φ = φH where CΓ(x) ≡

∫
ΣF

i

dξ dη Gζ = −
∫

Γ

d` ν · ∇ξ G
ζ (9)

and φH is defined by (2). The waterline-integral representation of the function CΓ in (9) can be obtained via
an elementary mathematical transformation [1]. The boundary integral flow representation (9) is identical to
the representation obtained—for wave diffraction-radiation by an offshore structure—in [5] from the usual NK
flow model (over 40 years ago) and more recently in [3] from the RW flow model. The flow representation (9)
and the RW flow model with the ‘no-flow at the ship waterplane’ constraint are then identified as the NN flow
representation/model. The NN flow representation (9) does not include a waterline integral, and indeed does



not involve the flow potential ϕ at Γ. Specifically, the function CΓ(x) defined by the equivalent waterplane or
waterline integrals in (9) does not involve the flow potential ϕ. The waterline-integral representation of CΓ(x)
in (9) can be evaluated in a straightforward way via the Fourier-Kochin method and expressions (7.56) in [1] .

The NN flow representation (9) can be expressed as

φ =

∫
ΣH

da
[
G qH− ϕ n ·∇ξG

]
+ C φ where C ≡

∫
ΣF

i

dξ dη Gζ +

∫
ΣH

da n ·∇ξG

is the flux through the closed surface ΣFi ∪ ΣH due to a submerged source, or a flux through the free-surface
plane, at the singular point x in the Green function G. One has C = 0 if x is outside the ship-hull surface.
Thus, the NN flow representation expresses the potential φ at a point x in the flow region outside the ship as

φ ≡ ϕ(x) =

∫
ΣH

da
[
G qH− ϕ n ·∇ξG

]
(10)

where the flow potential ϕ ≡ ϕ(ξ) at ΣH is determined by the weakly-singular boundary-integral equation
(9). Common displacement ships are streamlined slender bodies for which one has qH = F nx = O(B/L) and
ϕ = O(BD/L2) where B and D are the beam or the draft of the ship. Thus, (10) yields

φ ≈ F
∫

ΣH

da G nx . (11)

This approximation, proposed by Hogner in 1932 as a composite of Michell’s ‘thin-ship approximation’ and
the similar ‘flat-ship approximation’ proposed by Havelock, is then also an approximate solution of the NN
boundary-integral equation (9). The approximation (11) explicitly determines the flow created by a ship in
terms of the Froude number F and nx, i.e. the speed and the length of the ship, and the ship-hull form. Indeed,
Hogner’s approximation is among the most remarkable results in ship hydrodynamics, and is realistic and useful
for many practical applications, notably for hull-form optimization, e.g. [6], to analyze the influence of wave
interferences on far-field wave patterns, e.g. [7-10], and to filter inconsequential short waves, e.g. [11,12].

5. Conclusions

The waterline integrals in the NK, NM, RW-hw and RW-h flow representations are a difficult issue because
the flow potential ϕ is unlikely to be well defined at the ship waterline Γ. Specifically, although the Neumann
boundary condition at ΣH and the nonlinear free-surface boundary condition for steady potential flows are
compatible along the actual waterline [13,14] , the Kelvin-Michell linear free-surface boundary condition at
ΣF and the Neumann boundary condition at ΣH are not compatible at the mean wetted waterline Γ. Thus,
the NK, NM, RW-hw and RW-h flow representations can be expected to be ill suited for practical numerical
applications; indeed, these flow representations might not be solvable. In particular, numerical difficulties and
uncertainties associated with the NK integro-differential equation (1), which has been taken as the theoretical
basis of innumerable numerical applications in the past fifty years, are amply reported in the literature. The
uncertainties associated with the behavior of the flow potential ϕ at the ship waterline Γ do not necessarily
imply that numerical solutions of the NK, NM and RW flow representations (1), (3) and (5) cannot be obtained
via a typical low-order panel method in which the flow potential ϕ at a waterline segment Γm is taken equal
to the value of ϕ at the centroid of the panel ΣHm that contains Γm . However, attempts to obtain numerical
solutions in which ϕ at Γ is determined as the solution of the boundary-integral flow representation may be
expected to result in numerical difficulties. The NN flow representation (9) stands out among the six alternative
flow representations given in this study because it does not involve the flow potential ϕ at the ship waterline.
This flow representation yields an integral equation that determines ϕ at the ship hull surface ΣH .

In the RW flow model, Green’s basic identity is applied in the flow region between the submerged closed
body surface ΣH− ∪ ΣHi and the free surface ΣF ∪ ΣFi , and the limit δ → 0 is considered subsequently. In short,
Green’s identity is applied in the flow region that corresponds to δ = 0 in the classical NK problem or to the
region that corresponds to 0 < δ << 1 in the RW model (in which the limit δ = 0 is considered afterward
rather than initially in the NK model). This reversal of the limit δ = 0 yields different boundary-integral
flow representations, although the NK and RW flow models satisfy identical boundary conditions if δ = 0.
Specifically, the NK, NM, RW, RW-hw, RW-h and NN flow representations satisfy the Laplace equation in the
flow region outside the ship-hull surface ΣH , the Kelvin-Michell linear boundary condition at the undisturbed
free surface ΣF and the Neumann boundary condition at ΣH , although these alternative flow representations
differ significantly. The differences between the NK, NM, RW, RW-hw, RW-h and NN flow representations



ultimately stem from the fact that these flow representations correspond to alternative linear flow models.
In particular, the ship waterline Γ in the NK flow model is the intersection curve between two surfaces: the
free surface ΣF and the mean wetted ship-hull surface ΣH , where the Kelvin-Michell boundary condition or
a Neumann boundary condition are applied. However, in the RW, RW-hw, RW-h and NN flow models, the
waterline Γ separates three surfaces: the free surface ΣF, the hull surface ΣH and the ship waterplane ΣFi where
three different boundary conditions hold: the free-surface condition, the ship-hull surface condition, and either
a ‘2D-flow’ or a ‘no-flow’ restriction. Differences or incompatibilities between these boundary conditions may
result in different local behaviors of the flow potential, and possibly different flow singularities, at Γ.

The ‘no-flow’ constraint ϕ = 0 imposes that the thin sheet of water above the rigid lid that closes a free-
surface piercing hull in the RW flow model is a ‘dead-water’ region, which arguably precludes infinite flow
velocities at the waterline and intuitively ensures that the flows around a free-surface piercing ship-hull surface
ΣH and the corresponding submerged body surface ΣH− ∪ ΣHi defined in the RW flow model are practically
equivalent. Lastly, the waterplane constraint ϕ = 0 is consistent with the fact that the flow around ΣH does
not determine a flow inside ΣH , which can then be freely specified and in particular may be chosen nil.

There is no obvious a-priory way of knowing if a flow model, which is merely a theoretical model of real flows,
is sufficiently realistic to yield predictions in good agreement with reality; indeed, reasonable approximations,
careful analysis, hope and good luck ultimately are major ingredients of any theoretical analysis of fluid flows.
Thus, advocacy of a specific boundary-integral flow representation is not the main goal of this brief study.
Rather, the primary objective of the study is to consider alternatives to the classical NK linear flow model
and the corresponding boundary-integral flow representation (1), which has been steadfastly applied in the
past fifty years—despite well-documented numerical difficulties—with limited search for possible alternatives
to the NK model and related alternative flow representations. While this study cannot advocate a specific
boundary-integral flow representation as was already noted, it can be said that the NN boundary-integral
flow representation (9) offers a remarkably simple and appealing alternative to the NK boundary-integral flow
representation (1). Moreover, an important feature of the NN flow representation (9) is that it also holds
for a ship that steadily advances through regular waves as is shown in [1] and for an offshore structure in
regular waves [1,3,5] , whereas the classical NK boundary-integral flow representations for an offshore structure
in regular waves or a ship that advances in calm water or through waves differ significantly.
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