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HIGHLIGHTS
Using Lax-Phillips scattering theory, a solution for the hydroelastic vibration of an ice shelf
is presented. This serves as a model for the application of this method to other hydroelastic
problems.

1 INTRODUCTION

Ice shelves are floating glaciers that form in the Arctic and Antarctic. Recent mea-
surements have shown that waves generated by storms at distant continental coasts impact
Antarctic ice shelves [1]. We present here a simple hydroelastic model for ice shelf vibration
based on [2, 3]. We show that the problem can be formulated within the paradigm of Lax-
Phillips scattering [4] and develop the theory for this. We hope that this serves as a starting
point for the application of this theory to hydrolastic problems.

2 MATHEMATICAL MODEL

A shelf of length L and uniform thickness h � L floats on a water cavity of uniform
depth Hs. The coordinate x denotes horizontal locations along the shelf/cavity, with its
origin set to coincide with the seaward end of the shelf and x = L denoting the landward
end. Open water of depth H exists for x < 0. Figure 1 shows this configuration.
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Figure 1: Schematic diagram.

As the wavelengths are assumed to be far greater than the water depth and the wave
steepness to be small, the potential satisfies the linear shallow-water equation

∂2
xΦ =

{
− 1

Hs
∂tη, 0 < x < L,

− 1
H
∂tη, x < 0,

(1)



where η(x, t) is the elevation of the water surface, and t denotes time. The function Φ(x, t)
is the velocity potential of the fluid, which satisfies the following no-flux condition at the
landward end of the cavity:

∂xΦ = 0 at x = L. (2)

The ice-shelf is modelled as a thin–elastic plate, meaning its strain field can be determined
from the displacement function satisfying

−ρw∂tΦ =

{
D∂4

xη + ρih∂
2
t η + ρwgη 0 < x < L,

ρwgη x < 0,
(3)

where the equation for x < 0 is the standard free-surface condition. Here g ≈ 9.81 m s−2

is the constant of gravitational acceleration, ρw ≈ 1024 kg m−3 and ρi are water and ice
densities, respectively, and D = Eh3/{12(1 − ν2)} is the the flexural rigidity of the shelf,
where E = 11 GPa is its effective Young’s modulus and ν ≈ 0.33 its Poisson’s ratio. The
shelf is clamped at its landward end via the conditions

η = 0 and ∂xη = 0 at x = L, (4a)

and free at its seaward end, with conditions

∂2
xη = 0 and ∂3

xη = 0 at x = 0. (4b)

At x = 0, the assumption that the draft of the ice shelf is shallow gives rise to the following
matching conditions for Φ:

Φ(0−, t) = Φ(0+, t), and Hs∂xΦ(0−, t) = H∂xΦ(0+, t). (5)

We rewrite equations (1) and (3) in terms of the negative acceleration potential, Ψ =
−∂tΦ. We write the non-dimensional equations as an abstract wave , similar to what was
done in [5] for a plate on water of finite depth

∂2
t η +A2η = 0, (6)

where the operator A2 is given by

A2η =

−
Hs

H
∂2
xΨ, 0 < x < L,

−∂2
xΨ, x < 0.

(7)

The operator A2 is self-adjoint and positive in the Hilbert space given by

〈η, η′〉E = 〈η, η′〉[−L,∞] + β〈∂2
xη, ∂

2
xη
′〉[−L,0]. (8)

We want to find the elements of the continuous spectrum of the operator A2 that are nothing
more than single-frequency solutions. We solve

A2−→η (x, k) = k2−→η (x, k) (9)

subject to the conditions that

−→η (x, k) = eıkx +R(k)eıkx, x < 0

The technique to find −→η (x, k) follows from [3].



3 LAX-PHILLIPS SCATTERING

We introduce a transform given by wave solution −→η (x, k) which is

f̂(k) =
1

2k2

〈(
η0(x)

i∂tη0(x)

)
,

( −→η (x, k)
k−→η (x, k)

)〉
H

(10)

which has inverse (
η0(x)

i∂tη0(x)

)
=

1

2π

∫ ∞
−∞

f̂(k)

( −→η (x, k)
k−→η (x, k)

)
dk (11)

This transform allows us to solve the wave equation.
The system has three orthogonal subspaces, D+ which is the incoming waves, D− which is

the outgoing waves, and K which is the solution under the ice-shelf. The space K is mapped
to

K → H−p 	R(k)H−p (12)

where H−p is the Hardy space of function analytic in the lower half plane. At this point we
use the fact that

R(k) = −
∞∏

n=−∞

k − k̄n
k − kn

(13)

noting that this results has not been proven but shown numerically.
Finally we can form a biorthogonal system where∫ ∞

−∞
φn(k)ψm(k)∗dk = δmn (14)

with

ψm =
1

k − k̄m

∞∏
n=−∞

k − k̄n
k − kn

1

dR/dk|k=kn

(15)

The solution in the region K (which is equivalent to the space of functions on−L < x < 0)
is given by

f(k, t) =
∑

anψne−ıknt (16)

where

ψn =
R(k)

k − k̄n
(17)

We can form an biorthogonal series with

φn =
1

k − kn
(18)

For f ∈ K we have

f(k) =
∑ R(k)

k − k̄n
f(kn)

dR/dk|k=kn

(19)

We can see that this implies that in the physical space

η(x, t) =
∑
n

φn(x)
〈η(x, 0), ψn(x)〉H

dR/dk|k=kn

eıknt (20)

where the solutions ψn(x) and φn(x) are the analytic continuation of the solutions −→η (x, k)
for k = kn and k = k̄n respectively.



4 RESULTS AND CONCLUSIONS

We consider typical values for an ice-shelf and compute the analytic extension of the
scattering matrix (or reflection coefficient). Figure 2 shows the analytic extension of the
scattering matrix (or reflection coefficient) for L = 40 km, H = 200 m and water depth
h = 300 m. Figure 3 shows the time dependent motion starting from a Gaussian displacement
of the ice shelf. More results will be shown in the workshop.

Figure 2: Time-domain results for the vibration of an ice shelf starting from an initial
Gaussian displacement. The ice shelf is for −10 < x < 0 and open water x > 0.

We have shown that a simple model for wave–ice shelf interactions leads to interesting
results with important geophysical applications. We hope this work will motivate further
study, especially the development of hydroelastic models including more realistic geometries.
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