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HIGHLIGHTS

Using Lax-Phillips scattering theory, a solution for the hydroelastic vibration of an ice shelf
is presented. This serves as a model for the application of this method to other hydroelastic
problems.

1 INTRODUCTION

Ice shelves are floating glaciers that form in the Arctic and Antarctic. Recent mea-
surements have shown that waves generated by storms at distant continental coasts impact
Antarctic ice shelves [1]. We present here a simple hydroelastic model for ice shelf vibration
based on [2, 3]. We show that the problem can be formulated within the paradigm of Lax-
Phillips scattering [4] and develop the theory for this. We hope that this serves as a starting
point for the application of this theory to hydrolastic problems.

2 MATHEMATICAL MODEL

A shelf of length L and uniform thickness h < L floats on a water cavity of uniform
depth H,. The coordinate = denotes horizontal locations along the shelf/cavity, with its
origin set to coincide with the seaward end of the shelf and x = L denoting the landward
end. Open water of depth H exists for x < 0. Figure 1 shows this configuration.
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Figure 1: Schematic diagram.

As the wavelengths are assumed to be far greater than the water depth and the wave
steepness to be small, the potential satisfies the linear shallow-water equation

L
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where 7(x,t) is the elevation of the water surface, and ¢ denotes time. The function ®(z,t)
is the velocity potential of the fluid, which satisfies the following no-flux condition at the
landward end of the cavity:

0,9 =0 at x=L. (2)

The ice-shelf is modelled as a thin—elastic plate, meaning its strain field can be determined
from the displacement function satisfying

Do hO? - O<z<L,
—pwé‘tsz{ 21+ phin + pwgn x )

Pwgn x <0,

where the equation for z < 0 is the standard free-surface condition. Here g ~ 9.81ms™2
is the constant of gravitational acceleration, p, ~ 1024kgm™3 and p; are water and ice
densities, respectively, and D = Eh3/{12(1 — v?)} is the the flexural rigidity of the shelf,
where £ = 11 GPa is its effective Young’s modulus and v ~ 0.33 its Poisson’s ratio. The
shelf is clamped at its landward end via the conditions

n=0 and 9,n=0 at z=1, (4a)
and free at its seaward end, with conditions
2n=0 and IPn=0 at z=0. (4b)

At x = 0, the assumption that the draft of the ice shelf is shallow gives rise to the following
matching conditions for ®:

O(07,t) =d(0",¢t), and H0,P(07,t) = HO,P(0",1). (5)

We rewrite equations (1) and (3) in terms of the negative acceleration potential, ¥ =
—0;®. We write the non-dimensional equations as an abstract wave , similar to what was
done in [5] for a plate on water of finite depth

Oin+ A*n =0, (6)

where the operator A? is given by

Hy
A2 — —ﬁag\y, O<z<L,

(7)
-0, z < 0.

The operator A? is self-adjoint and positive in the Hilbert space given by

<777 T],>5 - <777 77/>[—L,c>o] + 5@2777 a:ilr],>[—L,0} . (8)

We want to find the elements of the continuous spectrum of the operator A% that are nothing
more than single-frequency solutions. We solve

AT (2, k) = K27 (2, ) (9)
subject to the conditions that
7 (r, k) = e* + R(k)e*™, z <0
The technique to find 7 (z, k) follows from [3].



3 LAX-PHILLIPS SCATTERING

We introduce a transform given by wave solution 7(35, k) which is
; 1 mo() ) ( 7 (@, k) )>
k)=—=(1. 10
fh) = o <<13t770($) Akt m) /), (10)
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This transform allows us to solve the wave equation.

The system has three orthogonal subspaces, D which is the incoming waves, D_ which is
the outgoing waves, and K which is the solution under the ice-shelf. The space K is mapped
to

which has inverse

K— H, ©R(kH, (12)
where H is the Hardy space of function analytic in the lower half plane. At this point we

use the fact that -
Rk = - [] At (13
B o k=,

noting that this results has not been proven but shown numerically.
Finally we can form a biorthogonal system where

/_ T (k) dk = e (14)

with
1 1

U = H k— k: dR/dK],_,,

(15)

The solution in the region K (which is equlvalent to the space of functions on —L < x < 0)

is given by

= Z e Fnt (16)
where R(K)

= , 17

e, (17)
We can form an biorthogonal series with
1
n — 1

For f € K we have

_ R(k)  f(kn)
UCEDY k— k, dR/dK|,_, (19)

We can see that this implies that in the physical space

n(x,0), ¢ (x ot
Z% dR/dk\k(k» - 20)

where the solutions v, (z) and gzﬁn(x) are the analytic continuation of the solutions 7/ (x, k)
for k = k,, and k = k,, respectively.



4 RESULTS AND CONCLUSIONS

We consider typical values for an ice-shelf and compute the analytic extension of the
scattering matrix (or reflection coefficient). Figure 2 shows the analytic extension of the
scattering matrix (or reflection coefficient) for L = 40km, H = 200m and water depth
h = 300m. Figure 3 shows the time dependent motion starting from a Gaussian displacement
of the ice shelf. More results will be shown in the workshop.
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Figure 2: Time-domain results for the vibration of an ice shelf starting from an initial
Gaussian displacement. The ice shelf is for —10 < z < 0 and open water x > 0.

We have shown that a simple model for wave-ice shelf interactions leads to interesting
results with important geophysical applications. We hope this work will motivate further
study, especially the development of hydroelastic models including more realistic geometries.
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