Theoretical and experimental evidence of negative refraction of
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1 INTRODUCTION

Metamaterials push the boundaries of wave control by enabling the exploitation of un-
usual physical properties such as negative refraction and extreme anisotropy. In the context
of surface water waves, these advances pave the way for innovative applications, transform-
ing propagation characteristics through specially designed resonant systems (see the recent
review in [1]). This work investigates unconventional wave propagation phenomena on wa-
ter surfaces using metamaterials designed to alter their dispersion. On one hand, elliptical
dispersion with double negativity is achieved through a system of underwater resonant cav-
ities, demonstrating both positive and negative refractive indices depending on the regime
[2]. On the other hand, hyperbolic dispersion is realized in devices combining open channels
with subwavelength resonators, resulting in an effective negative water depth and negative
refraction [3, 4]. Together, these studies highlight innovative mechanisms for wave manipu-
lation, bridging concepts of double negativity and hyperbolic dispersion with the properties
of water-wave metamaterials.
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Figure 1: Conceptuel views of the arrays of resonant cavities realizing metamaterials for water
waves with (a) elliptic dispersion and (b) hyperbolic dispersion with negative refraction. The
highlighted regions show the 3D unit cells.



2 THEORETICAL ANALYSIS
Water waves propagate along the free surface of a water column. Under the assumptions of
an inviscid, incompressible fluid with irrotational motion, the velocity field U (r, z), where
r = (x,y) denotes the horizontal coordinates, and its associated velocity potential ®(r, z)
satisfy
w2

divU =0, U=V, U,(r0) = ?(I)('r, 0), U -n =0 on the walls, (1)
where U, is the vertical velocity component, w is the angular frequency, and g represents
gravity. For a water column with constant depth h, waves follow the dispersion relation
w? = gktanh(kh). In the presence of resonant cavities (figure 1(a) or (b)), the analysis
follows the asymptotic approach developed in [3, 4], assuming that the size of the cavities
and the water depth are small compared to the reference wavelength 1/k.

In this framework, the potential inside the cavities is constant, and communication be-
tween cavities occurs locally at their openings through incoming and outgoing fluxes. A
detailed analysis of the flow in the openings shows that the velocity is constant there, so the
flux entering cavity 2 from cavity 1 is given by F' = a(y2 — ¢1), with o = s/e, where s is the
cross-sectional area and e is the effective length of the hole, accounting for boundary layer
effects. Applying Bloch-Floquet conditions across the array and integrating the incompress-
ibility condition over the volume of each cavity in the unit cell reveals the dynamic boundary
conditions at the free surface and the contribution of fluxes between communicating regions.
We obtain:

D(r,z) = (1), @(r) = ety (2)

where ¢ is piecewise constant within each cavity in the unit cell.

Elliptic dispersion with double negativity — For this configuration, we use (2) in
the larger cavity with horizontal cross-section S, (¢ = ¢1) and in the smaller one with
cross-section s, (¢ = ¢2). By doing so, we find the system reads
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where 0 = w/w, and w? = 4ga/S, and v = S./s.. The solvability condition of (3) provides
the dispersion relation x(£2), of the form
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The corresponding full band structure is shown in figure 2(a) for 7 = 2, revealing two pass-

bands for Q € (0,1) and Q € (/7,7 + 1). This latter is associated with negative group
velocity. In particular close to €2 = /v + 1, the propagation is isotropic, with V, = J.w

given by
14 Q2
V= (1 <o. (5)
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Figure 2: Theoretical full band structure k as a function of the non dimensional frequency
Q.

Hyperbolic dispersion — A similar analysis applies to the structure of figure 1(b), see
[3], in the close cavity with horizontal cross-section S, (¢ = ¢;) and in the open avenue with
cross-section S (¢ = ¢9), resulting in
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where Q = w/w, and w? = 2ga/S,, v = S./S and Kk, = yw,./(gh). Again, the solvability
condition of (6) provides the dispersion relation of the form
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The full band structure (figure 2(b)) reveals two pass-bands for Q € (0,1) and Q € (\/7, +00)
(compared to the first structure, the propagation for large €2 is allowed thanks to the free
propagation in the avenues). The second pass-band has hyperbolic type dispersion and, near

the saddle point at 2 = y/y + 1 where x,¢ < 1, the dispersion (7) reads

MmN e (8)
K24y v+1 ’
which is hyperbolic with major axis along , (resp. along x,) below (resp. above) the saddle
point.

3 Experimental set-up and results

We experimentally validated the dispersion relations (4) and (7) (results will be presented).
Below we report the experimental results demonstrating the potential for negative refraction
in the metamaterials. The cavities were fabricated using a 3D printer with a resin material
that allows the menisci to slide smoothly along the walls. Their dimensions are as follow:
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Figure 3: Experimental evidence of negative refraction in (a) the elliptic metamaterial with dou-
ble negativity and (b) the hyperbolic metamaterial. The plain/dashed lines show the theoretical
trajectories of the beam from (4) and (7).

both cases h = 2 cm, and we used (a) a unit cell dimension of ¢? x h with £ = 2/1/2 cm?,
S.=6.2 cm?, s, = 4.4 cm? and (b) a unit cell dimension ¢, x £, X h, {, =2 c¢m, {, = 4 cm,
S, =1.82cm? S =1.8x2cm?

We used an incident beam generated by an oscillating cylinder, 16 ¢cm long (approxi-
matively 2 wavelengths) and 4 ¢cm in diameter driven by a linear motor, which strikes an
interface with a metamaterial slab at an angle of 8™ ~ 30° to the normal of the interface.
The working frequencies are about 4 Hz, in the second passband, where the refraction was
determined to be negative. Figures 3 show the displacement field measured by FTP, with
losses compensated. In both cases, negative refraction is visible to the naked eye, with a
beam emerging from the slab shifted downward compared to the incident beam. This obser-
vation agrees with the theoretical trajectories shown by the solid and dashed lines. These
trajectories were obtained by using (4) and (7), along with the conservation of the wave
vector component along y and the causality condition, which ensures that the energy flux
has a positive component in the z-direction.
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