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1. Introduction
Hydro-acoustic waves, namely acoustic–gravity waves in the ocean, are low-frequency

sound waves at the propagating speed of around 1500m/s. It can be seen that the research
on hydro-acoustic waves is rich and varied. However, the governing equations describing the
propagation of hydro-acoustic waves in these studies are various. Most studies directly used the
well-known linear wave equation derived by Lighthill (1978, p. 4)[1] as the governing equation for
the small-amplitude hydro-acoustic waves, while some studies used varied nonlinear governing
equations which stem from the original version derived by Longuet-Higgins (1950)[2]. More re-
cently, some papers by Das & Meylan (2023, 2024)[3, 4], and Pethiyagoda et al. (2024, 2025)[5, 6]

who added a linear term g(∂Φ/∂z) to the wave equation as their governing equations for the
problems they considered, and thought that this term represents the “static compression”, where
g and Φ are respectively the gravitational acceleration and the velocity potential. However, in
our opinion, their viewpoints do not agree with the physical interpretation as we can reveal
explicitly the mathematical origin (as shown in § 2). Motivated by the above-mentioned work
and issues, we will re-derive the governing equations in details, with a rigorous way, for hydro-
acoustic waves in different environmental conditions. The detailed mathematical manipulation
demonstrates the physical significance of g(∂Φ/∂z).

2. Mathematical formulation
Establish a three-dimensional Cartesian coordinate system (x, y, z), with the x-axis and the

y-axis lying on the horizontal plane, and the z-axis pointing vertically upwards. The equations
of continuity and of momentum for a compressible inviscid Newtonian fluid are as follows,

dρ

dt
+ ρ∇ · v = 0, (1)

dv

dt
= −1

ρ
∇p+ f , (2)

where ρ is the fluid density, t the time, v the velocity vector for the fluid flow, p the total

pressure (also called thermodynamic pressure), f the body force vector,
d

dt
=

∂

∂t
+ v · ∇. We

assume hereinafter the body force is due to the gravity, namely f = −g∇z.
The convective component in the left-hand side of Eq. (2) can be divided as

(v · ∇)v = ∇|v|2

2
− v × (∇× v). (3)

Consider an irrotational flow with ∇×v = 0. Equation (2) can be simplified as, for an inviscid
fluid with an irrotational motion,

∂v

∂t
+∇|v|2

2
= −1

ρ
∇p− g∇z. (4)
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Under the assumption of irrotational flow, v can be expressed in terms of a velocity potential
function Φ(x, y, z, t) as v = ∇Φ. Substituting it into Eq. (4) yields

− 1

ρ
∇p = ∇

(
∂Φ

∂t
+

|∇Φ|2

2
+ gz

)
. (5)

According to Longuet-Higgins (1950)[2], the relation connecting the total pressure p and

the density ρ is
dp

dρ
= c2, where c is the constant speed of sound in the compressible fluid. Then

the left-hand side of Eq. (5) can be rewritten as

−1

ρ
∇p = −1

ρ

(
∂p

∂x
,
∂p

∂y
,
∂p

∂z

)
= −1

ρ

(
dp

dρ

∂ρ

∂x
,
dp

dρ

∂ρ

∂y
,
dp

dρ

∂ρ

∂z

)
= −c2

(
1

ρ

∂ρ

∂x
,
1

ρ

∂ρ

∂y
,
1

ρ

∂ρ

∂z

)
= −c2∇(ln ρ) = −∇(c2 ln ρ). (6)

A combination of Eqs. (5) and (6) yields

−∇(c2 ln ρ) = ∇
(
∂Φ

∂t
+

|∇Φ|2

2
+ gz

)
, (7)

∂Φ

∂t
+

|∇Φ|2

2
+ gz + c2 ln ρ = C(t), (8)

where C(t), a function of time, is the Bernoulli constant and can be usually set as zero without
loss of generality as demonstrated by Lu (2020)[7]. Therefore,

ln ρ = − 1

c2

(
∂Φ

∂t
+

|∇Φ|2

2
+ gz

)
. (9)

In terms of v = ∇Φ, Eq. (1) can be written as

∇2Φ+
1

ρ

dρ

dt
= 0. (10)

In order to derive the governing equation for a compressible fluid, the rate of change of
density can be expressed as

1

ρ

dρ

dt
=

d

dt
(ln ρ). (11)

According to Eq. (9) and v = ∇Φ, the material derivative of ln ρ can be expanded as

d

dt
(ln ρ) = − 1

c2
d

dt

(
∂Φ

∂t
+

|∇Φ|2

2
+ gz

)
= − 1

c2

[
∂

∂t

(
∂Φ

∂t

)
+ v · ∇

(
∂Φ

∂t

)
+

∂

∂t

(
|∇Φ|2

2

)
+ v · ∇

(
|∇Φ|2

2

)
+

∂

∂t
(gz) + v · ∇(gz)

]
(12)

= − 1

c2

(
∂2Φ

∂t2
+

∂|∇Φ|2

∂t
+

1

2
∇Φ · ∇|∇Φ|2 + g

∂Φ

∂z

)
, (13)

where

v · ∇
(
∂Φ

∂t

)
= ∇Φ · ∂

∂t
(∇Φ) =

1

2

∂|∇Φ|2

∂t
, (14)

v · ∇(gz) = g∇Φ · ∇z = g

(
∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z

)
(0, 0, 1) = g

∂Φ

∂z
. (15)



As is shown in Eq. (12), the material derivative of gz can be divided into the local derivative
of gz and the convective derivative of gz. Equations (4) and (5) show that gz stems from the
body force due to the gravitational acceleration which is always time-independent. z is the
time-independent vertical coordinate in the Euler description. Obviously, the local derivative
of gz equals zero. Equation (15) shows that the convective derivative of gz yields g(∂Φ/∂z),
which represents a coupling between the rate of spatial change of gz and the convective effects
of the flow.

Therefore, substitution of Eqs. (11) and (13) into Eq. (10) leads to

∇2Φ− 1

c2

(
∂2Φ

∂t2
+

∂|∇Φ|2

∂t
+

1

2
∇Φ · ∇|∇Φ|2 + g

∂Φ

∂z

)
= 0. (16)

Equation (16) is the governing equation for a compressible fluid, satisfying both the conservation
laws of the mass and the momentum. It is noted that there is a typographical error in Longuet-

Higgins’s Eq. (94) (Longuet-Higgins 1950)[2], where
∂

∂t

(1
2
v2

)
should be replaced with

∂

∂t
(v2).

Equation (16) is equivalent to Longuet-Higgins’s corrected Eq. (94). Recently, Kadri & Akylas
(2016)[8], Kadri (2019)[9], Michele & Renzi (2020)[10], Kadri & Wang (2021)[11], and Yang &
Yang (2024)[12] used Eq. (16) as their governing equations.

Ignoring all nonlinear terms of Eq. (16) yields

∇2Φ− 1

c2

(
∂2Φ

∂t2
+ g

∂Φ

∂z

)
= 0. (17)

The linear equation (17) was adopted by Abdolali & Kirby (2017)[13], Yang et al. (2018)[14],
Meza-Valle et al. (2023)[15], Das & Meylan (2023, 2024)[3, 4], and Pethiyagoda et al. (2024,
2025)[5, 6] as their governing equations. Das & Meylan (2023, 2024)[3, 4], and Pethiyagoda et al.
(2024, 2025)[5, 6] designed this model (17) to simulate submarine earthquakes and atmospheric
pressure gradient, but they thought that g(∂Φ/∂z) represents the “static compression”. Ac-
cording to the derivation process above, it is obviously incorrect and will be further discussed
at the end of this section.

Next, we assume that the density of the fluid is uniform, namely ∇ρ = 0. Thus there will
be no convective derivatives. Then Eq. (10) reduces to

∇2Φ+
1

ρ

∂ρ

∂t
= 0. (18)

The second term in the left-hand side of Eq. (18) can be expanded as

1

ρ

∂ρ

∂t
=

∂

∂t
(ln ρ) = − 1

c2
∂

∂t

(
∂Φ

∂t
+

|∇Φ|2

2
+ gz

)
= − 1

c2

(
∂2Φ

∂t2
+

1

2

∂|∇Φ|2

∂t

)
. (19)

Here we can see that all convective derivatives in Eq. (12) disappear in Eq. (19). By virtue of
Eq. (19), Eq. (18) can finally be written as

∇2Φ− 1

c2

(
∂2Φ

∂t2
+

1

2

∂|∇Φ|2

∂t

)
= 0. (20)

Equation (20) is the governing equation for a compressible fluid with a uniform density, which
has not been seen in the literature. Ignoring the nonlinear term in Eq. (20) yields

∇2Φ− 1

c2
∂2Φ

∂t2
= 0. (21)

The linear equation (21), namely the wave equation, is extensively adopted as the governing
equation for hydro-acoustic waves.



The difference between two linear equations (17) and (21) is obviously shown with or
without g(∂Φ/∂z) which is from the body force term namely the gravity in the equation of
momentum (2). Das & Meylan (2023, 2024)[3, 4], and Pethiyagoda et al. (2024, 2025)[5, 6]

thought that g(∂Φ/∂z) represents the “static compression”. But according to the above detailed
derivation process, the real difference of Eqs. (17) and (21) is whether or not the density of
the fluid is uniform, and whether or not the convective derivative of gz exists. Therefore, in a
homogenous fluid, g(∂Φ/∂z) will disappear and cannot at will be added to the wave equation. It
is also reasonable to ignore g(∂Φ/∂z) in a stationary fluid or in a linearized problem. Because if
the fluid is stationary, namely v is a small quantity, the convective derivative will also disappear.

3. Conclusions
For an inviscid compressible fluid with irrotational flows, we re-derive the governing e-

quations in terms of the velocity potential, as shown in Eq. (16), which is a full mathematical
model applicable for the nonlinear motion with the convective effects of incident flow taken into
consideration. In view of the detailed mathematical manipulation for Eq. (16), we can find
that a highly concerned term g(∂Φ/∂z) is due to the combined effects of the flow convection
and the vertical gravitational acceleration, but not the so-called “static compression”. This
term will disappear for the case of a homogenous fluid, as proved in Eq. (20). Furthermore, in
the on-site workshop, the first author will revisit the well-known wave equation obtained for
the propagation of small disturbances in a stationary fluid, in a mathematically and physically
rigorous way, without the frequently-used assumption that the hydrostatic pressure is constant.
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