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Highlights
In a recent study by authors [1], wave scattering by a discrete plate-array metacylinder of arbitrary
cross-section was studied. A Fourier transform-based method has been developed to reduce the
plate influence in 2D to a 1D wave equation solved via a Green’s function. Building on this
framework, we extend the method to study wave radiation by an array of bottom-hinged plates, via
incorporating evanescent modes, which is essential for the study of energy extraction. Particular
focus is placed to the hydrodynamic coefficients by the hinged plates.

1 Statement of the problem
The fluid, with a constant depth ℎ, is assumed to be incompressible and inviscid, and the flow
is considered irrotational, allowing for the existence of a velocity potential Φ. A 3D coordinate
system 𝑂𝑥𝑦𝑧 is defined with the 𝑂𝑥𝑦 plane coinciding with the undisturbed free surface and 𝑂𝑧
axis pointing upward. We consider a train of water waves interacting with a parallel array of 𝑁 + 1
thin vertical plates, each hinged at the bottom. The plates are located at 𝑥 = 𝑥 𝑗 , extend horizontally
within 𝑦 ∈ (−𝑏 𝑗 , 𝑏 𝑗 ) and stand vertically −ℎ < 𝑧 < 0 with 𝑗 = 0, 1, ..., 𝑁 . The velocity potential
in a steady state of an angular frequency 𝜔 is written as Φ(𝑥, 𝑦, 𝑧, 𝑡) = Re[𝜙(𝑥, 𝑦, 𝑧) e−i𝜔𝑡], where
𝜙(𝑥, 𝑦, 𝑧) can be decomposed into

𝜙(𝑥, 𝑦, 𝑧) = −i𝑔𝐴
𝜔𝜓0(0)

𝜓0(𝑧)
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𝜙
(𝑛)
rad (𝑥, 𝑦, 𝑧). (1)

Here, 𝐴 is the wave amplitude, and 𝜑inc(𝑥, 𝑦) = ei𝑘 (𝑥 cos 𝜃0+𝑦 sin 𝜃0) is the incident wave potential,
where 𝑘 denotes the wavenumber satisfying the dispersion relation 𝜔2 = 𝑔𝑘 tanh(𝑘ℎ), and 𝜃0 is the
incident angle with respect to positive 𝑥-axis. Besides, 𝜓 𝑗 (𝑧) represent the vertical mode functions

𝜓 𝑗 (𝑧) = 𝑁−1/2
𝑗

cos[𝑘 𝑗 (𝑧 + ℎ)] with 𝑁 𝑗 =
1
2
+
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4𝑘 𝑗ℎ
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1
ℎ

∫ 0

−ℎ
𝜓𝑖 (𝑧)𝜓 𝑗 (𝑧)d𝑧 = 𝛿𝑖, 𝑗 ,

(2)
where 𝑘 𝑗 are positive roots of 𝜔2 = 𝑔𝑘 𝑗 tan(𝑘 𝑗ℎ) for 𝑗 > 1, and 𝑘0 = −i𝑘 is defined. The wave
scattering problem has been studied in [1], and thus we only focus on the wave radiation problem
here. The radiation potential can be expanded as

𝜙
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(𝑥𝑚, 𝑦) = 𝛿𝑛,𝑚 for 𝑦 ∈ (−𝑏𝑚, 𝑏𝑚), (3)



where 𝛺𝑛 denotes the angular velocity of pitch motion by the plate 𝑛, and 𝑢(𝑧) represents the
velocity induced by the paddle’s pitch motion at a unit angular velocity, expanded as

𝑢(𝑧) = 𝑧 + ℎ ≈
𝐽∑︁
𝑗=0
𝑉 𝑗 𝜓 𝑗 (𝑧) with 𝑉 𝑗 =
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ℎ
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𝑗

. (4)

Then, the radiation potential is governed by a 2D Helmholtz equation over the horizontal plane(
𝜕2
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𝜕𝑦2 − 𝑘2
𝑗

)
𝜑
(𝑛)
𝑗

= 0. (5)

2 Wave radiation by an array of plates in open water
We now consider the radiation of waves by an array of bottom-hinged plates in open water.
Following [1], we perform the Fourier transform along the plate
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Then the governing wave equation is reduced to a 1D Helmholtz equation(
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and 𝛾 𝑗 =

√︃
𝑘2
𝑗
+ 𝛽2. (7)

The transformation of the plate conditions leads to

d
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(8)
where 𝑃(𝑛)

𝑗
(𝛽) is the Fourier transform of potential jump across the plate, defined as

𝑃
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𝑝
(𝑛)
𝑗
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𝑝
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𝑗
(𝑦) |𝑦 | < 𝑏𝑛

0 |𝑦 | > 𝑏𝑛
(9)

By using the ‘dipole-like’ fundamental solution to the 1D Helmholtz equation satisfying the
continuous d𝑥 [𝑔 𝑗 (𝑥+𝑛 , 𝑥𝑛; 𝛽) − 𝑔 𝑗 (𝑥−𝑛 , 𝑥𝑛; 𝛽)] = 0 and potential jump 𝑔 𝑗 (𝑥+𝑛 , 𝑥𝑛; 𝛽) − 𝑔 𝑗 (𝑥−𝑛 , 𝑥𝑛; 𝛽) =
−1 conditions, given by

𝑔 𝑗 (𝑥, 𝑥𝑛; 𝛽) = −1
2

sgn(𝑥 − 𝑥𝑛) e−𝛾 𝑗 |𝑥−𝑥𝑛 |, (10)

we construct the solution 𝜑̄(𝑛)
𝑗
(𝑥, 𝛽) by a superposition of Green’s function
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𝑗
(𝑥, 𝛽) =

𝑁∑︁
𝑛=0

𝑃
(𝑛)
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2
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𝑃
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By imposing the boundary condition (3) on the hinged paddle, we have the integral equations

1
4𝜋

𝑁∑︁
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∫ ∞

−∞

∫ 𝑏𝑛

−𝑏𝑛
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(𝑦′)e−𝛾 𝑗 |𝑥𝑚−𝑥𝑛 |+i𝛽(𝑦−𝑦′)d𝑦′d𝛽 = 𝛿𝑛,𝑚 . (12)



The solution is expanded as

𝑝
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𝑗
(𝑦) ≈

𝑄∑︁
𝑞=0

𝑎
( 𝑗 ,𝑛)
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ei 𝑞𝜋2

(𝑞 + 1)𝜋
√︁

1 − 𝑢2 U𝑞 (𝑢), (13)

where U𝑞 (𝑢) denotes the Chebyshev polynomial of the second kind. Substituting the expansion
(13) into the boundary integral equation (12) and implementing Galerkin’s method via integrating
the test function 𝑤∗

𝑝 (𝑦/𝑏𝑚) over 𝑦 ∈ [−𝑏𝑚, 𝑏𝑚], we have the following equation system
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𝑛=0

𝑄∑︁
𝑞=0

𝑎
( 𝑗 ,𝑛)
𝑞 𝐾

( 𝑗)
𝑞,𝑛;𝑝,𝑚 = 𝛿𝑛,𝑚𝛿𝑝,0

𝑏𝑚

2
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( 𝑗)
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𝑏𝑚𝑏𝑛

4𝜋

∫ ∞

−∞
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(14)
where function 𝐷𝑞 (𝛽𝑏𝑛) is defined as

𝐷𝑞 (𝛽𝑏𝑛) =
1
𝑏𝑛

∫ 𝑏𝑛

−𝑏𝑛
e−i𝛽𝜂𝑤𝑞 (𝜂/𝑏𝑛)d𝜂 =

{
J𝑞+1(𝛽𝑏𝑛)/(𝛽𝑏𝑛) 𝛽 ≠ 0,
𝛿𝑞,0/2 𝛽 = 0.

(15)

The integral equation (14) is consistent with [2], which is based on recursive matching of
expansions across different domains. Notably, the equations for vertical modes 𝑗 are uncoupled,
indicating the computational cost is linearly dependent on the number of vertical modes. Algorithms
for efficiently computing the wavenumber integral can be found in [1] by using the orthogonal
relation of Bessel function and encoding the symmetric and asymmetric components. For the
present radiation problem, only the symmetric components are relevant.

3 An infinite periodic array
The method is straightforwardly generalised to an infinite periodic array of plates extending repeat-
edly in the 𝑦-direction with a spacing of 2𝑑. Due to the periodicity, this problem is equivalent to
wave radiation in a uniform channel of width 2𝑑. This problem was considered in [3], which used
an infinite series of image sources to represent channel wall effects. However, it is a nontrivial task
to handle the infinite sum of Hankel functions due to the slow convergence of the series.

Such difficulty can be effectively circumvented in the present study. Unlike the continuous
Fourier transform used in open waters, the present problem involves applying a Fourier transform
over a finite interval

𝜑̄
(𝑛)
𝑗 ,𝑙
(𝑥; 𝛽) = 1

2𝑑

∫ 𝑑

−𝑑
𝜑
(𝑛)
𝑗
(𝑥, 𝑦)e−i𝛽𝑙𝑦d𝑦 and 𝜑

(𝑛)
𝑗
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∞∑︁
𝑙=−∞

𝜑̄
(𝑛)
𝑗 ,𝑙
(𝑥; 𝛽)ei𝛽𝑙𝑦, (16)

where 𝛽𝑙 = 𝑙𝜋/𝑑, and then the governing equation becomes a 1D Helmholtz equation(
d2

d𝑥2 − 𝛾2
𝑗 ,𝑙

)
𝜑̄
(𝑛)
𝑗 ,𝑙

= 0, where 𝛾0,𝑙 =


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𝛽2
𝑙
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−i
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𝑙
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and 𝛾 𝑗 ,𝑙 =

√︃
𝑘2
𝑗
+ 𝛽2

𝑙
. (17)

In analogy to Eq. (11), the solution can be constructed in the form

𝜑̄
(𝑛)
𝑗 ,𝑙
(𝑥, 𝛽) = −1

2

𝑁∑︁
𝑛=0

𝑃
(𝑛)
𝑗
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−𝑏𝑛
𝑝
(𝑛)
𝑗
(𝑦)e−i𝛽𝑙𝑦d𝑦.
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By using the solution expansion in Eq. (13) and applying the bottom-hinged plate boundary
condition (3) in the sense of the Galerkin method, we obtain a system of equations analogous to
Eq. (14), with the coefficients replaced by a series as follows

𝐾
( 𝑗)
𝑞,𝑛;𝑝,𝑚 =

𝑏𝑚𝑏𝑛

4𝑑

∞∑︁
𝑙=−∞

𝛾 𝑗 ,𝑙𝐷 𝑝 (𝛽𝑙𝑏𝑚)𝐷𝑞 (𝛽𝑙𝑏𝑛)e−𝛾 𝑗 ,𝑙 |𝑥𝑚−𝑥𝑛 | . (19)

4 Hydrodynamic coefficients
Once the unknown coefficients 𝑎 ( 𝑗 ,𝑛)𝑞 are solved, we can obtain the wave exciting pitch moment and
the added mass and wave-radiation damping, expressed as

𝑀
(𝑛)
𝑥 =

−𝜌𝑔𝐴𝑏𝑛ℎ
cosh(𝑘ℎ) 𝑎

(s,n)
0 𝑁

1/2
0 𝑉0/2 and i𝜔𝐴𝑚𝑛 − 𝐵𝑚𝑛 = −i𝜌𝜔𝑏𝑚ℎ

𝐽∑︁
𝑗=0
𝑉2
𝑗 𝑎

( 𝑗 ,𝑛)
0 /2. (20)

With the hydrodynamic coefficients associated with radiation and diffraction, the wave-induced
motions can be calculated, enabling the quantification of energy harvesting. This work is still
ongoing, and we present only preliminary results. Figure 1 depicts the wave exiting pitch moment
(left) and added mass and radiation damping (right) by a single bottom-hinged plate in both open
water and channel configurations. Vertical lines indicate the wavenumbers corresponding to the
tank crossing modes, 𝑘 = 𝜋/𝑑. The added mass (solid line) and damping (dashed line) are
nondimenisonalised as 𝐴̃ = 𝐴/(4𝜌𝑏2ℎ3) and 𝐵̃ = 𝐵/(4𝜔𝜌𝑏2ℎ3), respectively. Sharp variations in
the hydrodynamic coefficients are observed near the first crossing mode. More results including
the wave energy harnessing will be presented at the workshop.
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Figure 1: Nondimensional pitch moment (left) and added mass and radiation damping (right) by a
bottom-hinged plate for 𝑏/ℎ = 1.0 and 𝑏/𝑑 = 0.5 in both open water and channel scenarios.
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