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1 Background  

The complex wave climate in Hawaii includes the year-round trade wind seas from the 

east and swells generated by extratropical cyclones in the North and South Pacific, as well as 

waves of variable direction from subtropical and tropical systems passing nearby. To resolve 

the diverse wave conditions, we assembled a numerical wave model system with the third-

generation spectral wave model WAVEWATCH III [1] and SWAN [2] on a telescopic nested 

grid system from the globe to Hawaii. The surface wind reanalysis from the Climate Forecast 

System[3] [4] for the entire globe and its downscaling by the Weather Research and 

Forecasting model (WRF) [5] for the Hawaii region [6] were utilized as input forcing to 

produce a wave hindcast from 1980 to 2020. The 42 years of hindcast, with grid resolution 

reaching 300 m in nearshore regions around Hawaii, was thoroughly validated by the buoy 

measurements and satellite altimetry [7]. The validated hindcast dataset has been widely used 

in energy resources assessments, and wave climate, shoreline change, and coral reef 

ecosystem studies. We also operate the model system with surface winds from Global 

Forecast System and its regional downscaling for Hawaii to provide daily wave predictions 

for up to 14 days. This short-term prediction provides vital information for at-sea operations 

and day-to-day coastal activities [https://www.pacioos.hawaii.edu/waves-category/model/]. 

Major operations and coastal management also need forecast information in an extended 

range, such as seasonal scales, for better planning and preparation.  

The goal of the seasonal wave forecast is not to predict the timing of wave activities but 

rather to estimate the overall sea states that are likely to be most prevalent over the coming 

season. Over decades of research, El Niño-Southern Oscillation (ENSO) has emerged as the 

primary driver for global seasonal climate forecasts. Previous studies, based on a low-

resolution global wave hindcast [8–10], have demonstrated significant impacts of El Niño on 

Hawaii’s wave climate. But, the orographic effect of the airflow and island sheltering of the 

multi-modal seas can only be resolved with high-resolution wave data. In this study, we used 

the 42 years of high-resolution hindcast to explore ENSO’s modulation on Hawaii’s coastal 

wave activities and developed an ENSO-based wave model to provide seasonal forecasts. 

2 ENSO’s modulation on seasonal wave statistics  

The 42-year high-resolution wave hindcast reveals pronounced seasonality and distinct 

spatial patterns of wave statistics around the Hawaiian Islands. As illustrated in Figure 1, the 

monthly mean significant wave height (𝐻𝑠
𝑚 ) ranges from 1.0 to 1.5 m for the extended 

summer months from May to September, demonstrating mild and steady seas. In contrast, 

waves are more energetic in winter, with the mean Hs from November to March exceeding 3 

m to the north. This drastic increase in wave heights is associated with the transition of 

dominant wave components—from trade wind waves in summer to north swells in winter. 

Shadowing effects near the southeast and west shores occur due to the sheltering of north 

swells and, to a lesser extent, easterly wind waves. 



 
Figure 1. Seasonal climatological statistics of mean Hs around the Hawaiian Islands. (a) May to 

September; (b) November to March. The blue star marks buoy #106. 

Despite significant seasonal variations in wave activities, the strong influence of ENSO 

on Hawaiian waves is evident in the correlation between the Niño3.4 index and 𝐻𝑠
𝑚 (Figure 

2). During the winter months, the correlation coefficient exceeds 0.8 at the north and west 

shores, which are exposed to north swells, indicating the strong modulation of ENSO on 

swell amplitudes. In the summer months, the ENSO-wave correlation is relatively small, 

indicating that the east trade wind waves are less responsive to ENSO than the north swells. 

The dramatic transition of ENSO impacts on local wave activities from winter to summer 

highlights the crucial role of the seasonal cycle in modulating the inter-annual relationship 

between ENSO and ocean waves or vice versa. 

 

 
Figure 2. Correlation of mean significant wave height with Niño 3.4 index for November-March and 

May-September. The contour interval is 0.2. Stippling indicates regions where the correlation is not 

significant at 95% confidence level (two-tailed Student's t-test). 

3 ENSO-based model to reconstruct wave statistics 

We develop a semi-empirical model of the climate cycle processes to reconstruct the 

monthly anomaly of wave statistics 𝑊 as a function of time t. 𝑊 can represent 𝐻𝑠
𝑚 and are 

reconstructed as a combination of linear and nonlinear processes based on the ENSO index, 

accounting for teleconnection of ENSO and its seasonality, as described  

𝑊(𝑡) = 𝛼(𝑡)𝑇ENSO(𝑡) + 𝛽(𝑡)𝑇ENSO
2 (𝑡),   (1) 

where 𝑇ENSO(𝑡) is the monthly Niño3.4 index and 𝛼(𝑡) and 𝛽(𝑡) are the seasonally varying 

linear and nonlinear ENSO forcing coefficients, which can be expressed as 𝛼(𝑡) =

𝛼0 [1 + 𝐴 cos (
2𝜋

12
t + φA)] , and 𝛽(𝑡) = 𝛽0 [1 + 𝐵 cos (

2𝜋

12
t + φB)] . The parameters 𝐴  and 

φA describe the amplitude and phase of the annual cycle for linear responses; and 𝐵 and 

φB for nonlinear response. The seasonal modulation of the linear forcing coefficient captures 



the significant difference in the ENSO influence between winter and summer. The nonlinear 

response in ENSO teleconnections is approximated to second order by a quadratic relation.  

Due to the locality-dependent wave conditions around the islands, the parameterization 

for this ENSO-based wave model is location-specific. As a demonstration, we estimate the 

linear and nonlinear parameters at buoy #106 off the north shores of Oahu (seen in Figure 1), 

by multivariate linear regression of the hindcast wave statistics and the observed Niño3.4 

from 1980 to 2020. With the optimized parameterization, the 𝐻𝑠
𝑚  anomalies can be 

reconstructed from the ENSO-based model and align well with the wave hindcast to 

effectively capture inter-annual wave variations (Figure 3). The ENSO-based-wave model 

provides an effective tool for us to leverage the ENSO long-range predictability to produce 

the wave forecast on seasonal scales. 

 

 
Figure 3. Hs anomalies averaged over November- March at buoy #106 based on wave hindcast (black) 

and reconstructed using Niño3.4 index (red). 

4 Seasonal Wave Forecast  

Over the last few decades, great effort has been made to understand ENSO variability and 

improve ENSO predictability. Recently, the authors developed an extended nonlinear 

recharge oscillator (XRO) model [11], which integrates core ENSO dynamics with its 

seasonally modulated interactions with other modes of variability in global oceans. The XRO 

model demonstrates exceptional performance, with correlations between the observed 

ENSO3.4 index and its forecasts exceeding 0.7 at a 12-month lead time and remaining above 

0.5 at an 18-month lead time. This outperforms global climate models and matches the 

predictive skill of the most advanced artificial intelligence-based methods. 

We applied the XRO ENSO forecasts, instead of the observed Niño3.4 index, to the 

ENSO-based wave model at buoy #106, which was developed using the high-resolution 

Hawaii wave hindcast from 1980 to 2009. The forecasted correlation skill is analyzed by 

comparing the forecasted wave statistics with the wave hindcast from 2010 to 2020. The 

results in figure 4 shows the forecast correlation, which is averaged over the 10 years by 

monthly lead time, remains above 0.5 for up to 9 months of lead time. In particular, the target 

months of December to May have higher forecast skills than other months, due to the strong 

ENSO influence in winter swells. The promising preliminary results provide a basis to further 

deploy the ENSO-wave-based model for operational seasonal wave forecasting by leveraging 

ENSO's robust predictability. 

5 Discussion and Conclusions 

Hawaii's complex wave climate is shaped by both local and distant weather systems, 

ranging from mesoscale to synoptic scales. A 42-year high-resolution wave hindcast dataset 

offers a comprehensive resource for analyzing the spatiotemporal patterns of coastal waves in 

Hawaii and identifying strong connections between ENSO and wave anomalies. The strong 

ENSO-wave connections allow us to develop a semi-empirical model to reconstruct seasonal 

wave statistics for Hawaii. In this pilot study, we implemented the XRO ENSO forecast in 

the ENSO-based wave model to generate seasonal wave predictions for a selected site on the 



Figure 4. (a) Out-of-sample forecast correlation skill of seasonal mean Hs anomalies over 2010-2020 

for buoy #106 using the coupled XRO-wave model, which is trained using the data for 1980-2009. (b) 

Same as (a) but for the correlation skill as a function of initialization (ordinate) and target months 

(abscissa; superscripts 0 and 1 denote the current and subsequent years). Hatching highlights forecasts 

with a correlation skill less than 0.5. The dashed vertical blue lines denote January. 

north shore of Oahu. The wave predictions align well with wave hindcast dataset for lead 

time up to 9 months. Moving forward, we aim to extend this methodology to the entire 

coastal waters of the Hawaiian Islands for seasonal-scale wave forecasts. Such forecasts will 

provide valuable insights for maritime operations, coastal hazard mitigation, and renewable 

energy harvesting. Furthermore, the framework introduced here can be adapted to other 

coastal regions in the Pacific Ocean strongly influenced by ENSO. 
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