Improved Prediction of Wave Excitation Forces Using Small-Body Based Correction
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1 LINEAR SMALL-BODY APPROXIMATION

The small-body approximation of the wave excitation force, as we know it from linear theory (see, e.g., [1]),
has the form
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where V is the displaced volume of the body, A;; is the added mass, ag; is the ith component of the fluid
acceleration (due to the unidisturbed incident wave) at a suitable reference point, S,, is the water plane area,
Mo is the incident free-surface elevation, p is the fluid density, g is the acceleration due to gravity, and &;; is
the Kronecker delta. The first and third terms are the small-body approximation of the Froude-Krylov force,
while the second term is the small-body approximation of the diffracted force. The displaced volume and
water plane area are taken at the body’s mean position.

2 GENERALISATION OF THE SMALL-BODY APPROXIMATION

The small-body approximation (1) has a simple form. Can we extend its range of validity to cases where the
wave steepness or the body size may not be small? The simplest improvement we can try is to replace mean
quantities in (1) with time-dependent quantities such that
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where V(1n0(¢)) is now the instantaneous displaced volume. In effect, this removes the linearity assumption
to some extent but does not remove the small-body assumption. Rather than using (2) directly, we propose
a correction to the linear excitation force, based on (2). This will be illustrated with the simplest case of
regular wave excitation. But first, we need to show if approximation (2) is plausible beyond linear theory.
With ¢ being the velocity potential and v = V¢ the fluid velocity, the dynamic pressure follows from
Bernoulli’s equation. The excitation force on the body is obtained by integrating this pressure over the
wetted body surface S,. While the body itself is fixed, S, is time-varying due to the varying free surface 7.
Decomposing the velocity potential ¢ into incident and diffracted potentials ¢y and ¢,, we have

F, —p//Sb<8¢O > dS+p// vo- vdndS+p// (a% > nds, 3)

with the unit normal vector n defined to be pointing out of the body.
Considering first the Froude-Krylov part—the first integral in (3)—we can write
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where S,, is the portion of the free surface bounded by the body. The last term arises from the dynamic
free-surface boundary condition. If we assume that the body is small, i.e., v is constant over the body, then
the second integral in (4) vanishes. Applying the divergence theorem to the first integral gives
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where V(1o(t)) is the instantaneous displaced volume of the body and ag(7) is the acceleration of the fluid
due to the incident wave. For the last integral, in the linear case, S,, is equal to S,,, which lies on the
horizontal plane, so only the vertical component is nonzero. In the nonlinear case, however, S,, is not
necessarily horizontal and so in general there is a nonzero horizontal component arising from this term in
addition to a vertical component.

The first term in the diffracted part—the third integral in (3)—can be expressed in terms of the radiation
potentials by using the Haskind relation. An amenable treatment of this integral seems possible only through
linear approximation, i.e., by taking S, as the mean wetted body surface, as in the linear case. The small-
body approximation then gives, for the ith component,
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after neglecting the radiation damping part and keeping only the added mass A;;, since the radiation impedance
of a small body is usually dominated by the imaginary part.
The second integral in (6) can be combined with the second integral in (3) and written as
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Assuming a small body, the first integral is zero. The second integral is an integral over S,,, having the same
form as the last integral in (4).

Thus far we have shown that the first terms of (5) and (6) are the first and second terms of (2). The
remaining term, based on the preceding derivation, is

1
pg// nondS—p// 5 (3+2v v nds, @®)
Sw SW

which, alternatively, may be written as
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by virtue of the dynamic free-surface boundary condition. While this is not quite the same as the last
term in (2), it may explain why pg (V(1o(t)) — V) 8 gives a better prediction, as we have found, than
PgSw(MNo(2)) No(t) 83, which one obtains from (1) if one simply replaces the mean quantities by the time-
varying ones. Therefore, we adopt (2) as the basis of our model.

3 SMALL-BODY BASED CORRECTION

Having shown that (2) is a reasonable form to use beyond the linear case, we will now describe our correc-
tion. Assuming that the linear force (F, )}, is known, we seek a model of the form
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where ~ denotes the complex amplitude, n denotes the nth harmonic, and N is the highest harmonic to be
included in the model. Here, (F, ;sp)iin is the linear small-body approximation (1), and (F, ;sg), is the nth
harmonic of (2). The Oth harmonic (the mean component) is separated from the main sum because the mean
is indifferent to a phase shift. This model effectively assumes that the proportions of the higher harmonic
forces relative to the linear ones are maintained regardless of the size of the body. The form (10) applies to
regular incident waves of frequency . It might be possible to formulate a more general form applicable to
irregular waves.



4 EXAMPLE

As an example, we compare our predictions with high-precision measurements reported in [2]. A half-
submerged sphere of radius r = 0.15 m is fixed in water of depth 2 = 0.9 m and subjected to regular waves.
We select three cases with wave heights and periods given in Table 1. Case R12 is the most severe wave
in terms of its steepness and height relative to the body size, while R0O5 is the shortest wave relative to the
body.

Table 1: Regular wave conditions.

Case wave height H [m] wave period T [s] % % %

RO1 0.0181 1.14 0.009 0.149 0.060
RO5 0.0561 0.88 0.046 0.248 0.187
R12 0.2611 1.42 0.087 0.100 0.870

For a given wave height and period, the incident free-surface elevation 1y(¢) in (2) is obtained from
stream function theory [3] as implemented in the CN-Stream libraries [4], while the linear form is used
in (1). For simplicity, we assume 7o (¢) to always have a horizontal profile within the body. The accel-
erations in (1) and (2) are both calculated at the mean centroid of the body. Again, for simplicity, the
accelerations in (2) are calculated as in the linear case, but with the linear 1y(¢) replaced with 1ny(¢) obtained
from stream function theory. In addition, the added masses in (1) and (2) are identical and calculated as-
suming a perfect hemisphere as the wetted body. The linear excitation forces and added masses are obtained
from HydroStar [5].

Figure 1 compares the predicted excitation forces with the measurements. The measurements have
been digitised from [2]. However, no data were reported for RO5. We see that the crest of the surge force is
amplified with wave steepness, while the heave force is reduced at the peak. The applied correction does well
in capturing these features even for the steepest case R12, whereas linear theory is clearly inadequate. Good
prediction is obtained particularly for the heave force, whereas certain features of the surge force are not as
well captured, notably the flat region around a zero upcrossing. The ratios of the predicted harmonics to the
linear amplitude are shown in Fig. 2 for the three wave conditions. Perhaps the most striking observation
is the significant reduction of the first harmonic excitation force in heave for the steepest condition R12.
The amplitude of the first harmonic force is reduced to 67% of the linear amplitude. If the sphere is a
heaving wave energy absorber, this implies that it would absorb less than half the power predicted using
linear theory from the same wave. The ratio of the first harmonic heave force to the linear amplitude for this
body geometry is always less than one.

These results indicate how much more nonlinear the excitation forces may be than the incident waves,
due to the interactions of the wave with the body. Figure 2 appears to suggest that a half-submerged sphere
would be a better wave energy absorber if it operates in surge rather than heave.
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Figure 1: Comparison of the free-surface elevation, excitation force in surge, and excitation force in heave
from linear theory, the corrected version, and measurements.
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Figure 2: Ratios of the harmonics to the linear: incident wave (top), surge excitation force (middle), heave
excitation force (bottom).



