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1 INTRODUCTION
Two-dimensional symmetric problem of water impact is considered within the so-called Gen-
eralised Wagner Model (GWM). This model was introduced by Zhao et al. (1996). The
model assumes potential two-dimensional flow. The body shape, the body boundary con-
ditions and the nonlinear Bernoulli equations are original without any simplifications. The
dynamic and kinematic boundary conditions on the free surface are linearised and imposed
on the horizontal line at the splash-up height. The dynamic boundary condition is reduced
to the condition that the velocity potential is equal to zero on the approximated position of
the free surface. The splash-up height, which is the vertical coordinate of the intersection
point between the free surface and the surface of the body, is calculated using the Wagner
condition, Wagner (1932). The Wagner condition states that the elevation of the free surface,
which is obtained by the time-integration of the linearised kinematic boundary condition,
at the intersection (contact) point is equal to the vertical coordinate of the body surface at
this point. The slamming force and the pressure distribution predicted by the GWM agree
well with experiments and numerical results by direct simulation of the original nonlinear
problem with unknown position of the free surface, see Zhao et al. (1996). The flow ve-
locity in the GWM is singular but integrable at the contact points. Correspondingly, the
hydrodynamic pressure at these points is also singular but not integrable. The pressure was
suggested to consider only there where it is positive.

Figure 1: Generalised Wagner model

Zhao et al. (1996) solved the boundary-value problem for the velocity potential and the
velocity components at each time step by the boundary element method. The shape of the
free surface and the contact point position were obtained by numerical integration of the
kinematic boundary condition. Khabakhpasheva et al. (2014) solved the problem using a
conformal mapping of the flow region onto the lower half-plane. The conformal mapping was
calculated numerically. The Wagner condition was reduced to an integral equation, which
was solved numerically. The singularities of the flow and the pressure close to the contact
points were separated and incorporated into the algorithm.

In the present study, we consider blunt bodies, for which the GWM problem can be
solved approximately using asymptotic methods with a corresponding small parameter. Two-
term solution is derived. Its relation to the existing analytical models of water impact, see



Korobkin (2004), is discussed. The same approach can be applied to the original nonlinear
problem, but the analysis is more complicated than for the GWM because of more complex
conditions on the free surface.

2. FORMULATION OF THE PROBLEM AND ASYMPTOTIC ANALYSIS
The velocity potential ϕ′(x′, y′, t′) of the flow caused by a symmetric blunt body impact

onto the initially flat free surface satisfies within the GWM the following equations, see Fig.1,

∇2ϕ′ = 0 in Ω′(t′), ϕ′(x′, H ′(t′), t′) = 0 (y′ = H ′(t′), |x′| > c′(t′)),

ϕ′y′ = f ′x′(x
′)ϕ′x′ − h′t′(t′) (y′ = f ′(x′)− h′(t′), |x′| < c′(t′)), (1)

ϕ′ → 0 (x′2 + y′2 →∞), ϕ′(x′, y′, 0) = 0, H ′(0) = 0, c′(0) = 0.

A prime here stands for dimensional variables, H ′(t′) = f ′(c′)− h′(t′) is the splash-up hight,
the function f ′(x′) describes the symmetric shape of the impacting body, f ′(0) = 0, f ′(−x′) =
f ′(x′), h′(t′) is the vertical displacement of the body, h′(0) = 0, h′t′(0) = V0 is the initial
speed of the body. The shape of the free surface, y′ = η′(x′, t′), where |x′| > c′(t′), is obtained
using the kinematic boundary condition,

η′(x′, t′) =

∫ t′

0

ϕ′y′(x
′, H ′(τ ′), τ ′)dτ ′. (2)

The Wagner condition reads,
η′(c′(t′), t′) = H ′(t′), (3)

in the symmetric case. Once the problem (1)-(3) has been solved, the pressure over the
wetted part of the body (contact region), P ′(x′, t′) = p′(x′, f ′(x′)−h′(t′), t′), is calculated by
the non-linear Bernoulli equation, which is written in the form, see Korobkin (2004),
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, (4)

where φ′(x′, t′) = ϕ′(x′, f ′(x′) − h′(t′), t′) is the distribution of the velocity potential along
the wetted part of the body surface.

For a blunt body, its height B is much smaller than the horizontal dimension L of the
body with ε = B/L being the small parameter of the problem, see figure 1. During the
initial stage, when c′(t′) < L, the dimensionless variables, which are denoted with the same
symbols but without the prime, are introduced as

x′ = Lx, y′ = Ly, t′ = Bt′/V0, h′ = Bh(t), c′ = Lc(t),

f ′(x′) = Bf(x), φ′ = LV0φ(x, y, t), h′ = BH(t), P ′ = ρV 2
0 P (x, t). (5)

The problem (1) reads in the dimensionless variables (5)

∇2ϕ = 0 in Ω(t), ϕ(x, εH(t), t) = 0 (y = εH(t), |x| > c(t)),

ϕy = εfx(x)ϕx − ht(t) (y = εY (x, t), |x| < c(t)), (6)



ϕ→ 0 (x2 + y2 →∞), ϕ(x, y, 0) = 0, H(0) = 0, c(0) = 0.

where Y (x, t) = f(x)−h(t) is the current position of the body surface. the Wagner condition
(3) takes the form ∫ t

0

ϕy(c(t), εH(τ), τ)dτ = f(c(t))− h(t). (7)

The velocity potential ϕ(x, y, t, ε) and the function c(t, ε) depend on the small parameter ε.
The potential is sought in the form,

ϕ(x, y, t) = ϕ0(x, y, t) + εϕ1(x, y, t) +O(ε2), (8)

as ε→ 0.
Substituting the asymptotic formula (8) in equations (6), (7) and setting ε = 0, we find

that the leading order potential ϕ0(x, y, t) is the velocity potential within the original Wagner
model (OWM),

ϕ0(x, 0, t) = −ht(t)
√
c2 − x2 (|x| < c(t, ε)),

ϕ0y(x, 0, t) = −ht(t)(1− x/
√
x2 − c2) (|x| > c(t, ε)). (9)

Note that we do not use the Wagner condition at this stage. The second order potential is
convenient to decompose as

ϕ1(x, y, t) = −H(t)ϕ0y(x, y, t) + ht(t)ϕ̂1(x, y, t), (10)

where

ϕ̂1y(x, 0, t) =
1
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(x > c), (11)
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P.v.

∫ c
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A(ξ)dξ

ξ − x
(|x| < c), (12)

and A(ξ) = c2(t, ε)[f(ξ)− f(c)]/(c2− ξ2) + ξfξ(ξ). Note that A(ξ) is even function of ξ. For
a parabolic shape, f(x) = x2, we have A(ξ) = 2ξ2− c2, and for a wedge, f(x) = |x|, we have
A(ξ) = ξ − c2/(ξ + c), where 0 < ξ < c. The Wagner condition (7) is approximated with
accuracy O(ε2) as∫ t

0

[
ϕ0y(c(t, ε), 0, τ) + εϕ̂1y(c(t, ε), 0, τ)

]
dτ = f(c(t, ε))− h(t). (13)

For a wedge, equations (9), (11) and (13) provide c(t, ε) = k(ε)h(t), where k(ε) = k0 + εk1 +
O(ε2), k0 = π/2 and

k1 =
1

π

∫ π

0

G1(sin θ)dθ, G1(σ) = log(1− σ2)− σ2

1 + σ
log
(1− σ

2

)
− σ2

1− σ
log
(1 + σ

2

)
.

Calculations give k1 = −0.07944, which implies that the Wagner approximation k(ε) ≈ k0
is good even for moderate values of ε.

The integral in (11) and (12) reads for a wedge, where x > 0,
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The integral (14) is denoted as cÃ(x/c) which is an odd function of x for symmetric shapes.
The dimensionless pressure (5) reads

P (x, t) = −φt −
ε

2

φ2
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1 + ε2f 2
x

− ε2 fxhtφx
1 + ε2f 2

x

, (15)

where

φ(x, t) = ϕ(x, εY (x, t), t) = −ht(t)
√
c2 − x2 + εht[f(c)− f(x)] + εhtϕ̂(x, 0, t) +O(ε2). (16)

The first two terms in (16) correspond to ”GWM in combination with the flat-disc approxi-
mation”, see Korobkin (2004), eq. (3.25). For a wedge, we obtain φ(x, t) = h′cφ̄(λ), where
λ = x/c(t, ε). Correspondingly the pressure (15) is self-similar, 0 < λ < 1,
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,

where Ã(λ) is given by (14) for a wedge. The small parameter ε is the tangent of the deadrise
angle of a wedge. The pressure distributions for 30o and 40o deadrise angles and constant
speed of impact are shown in Fig. 2, where the crosses are for fully non-linear numerical
solutions by Zhao et al. (1996), the green lines are for the Wagner original model, red lines
are for the present model and blue lines are for MLM, which is obtained from (17) by setting
Ã(λ) = 0. It is seen that the account for higher order terms in the GWM improves the
predictions of the impact pressures.

Figure 2: Pressure distribution over the wetted part of a wedge.
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