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Introduction 
There have been lot of discussions in the past concerning the correct expression for the hydrostatic restoring of deformable 

bodies. The most common formulations were discussed in [2]. In that work, exactly the same formulation of the hydrostatic 

restoring stiffness matrix, has been obtained by three very different methods. However, some problems were reported 

regarding its application to the evaluation of the internal loads. In [1] the problem was revisited, and a new formulation was 

proposed. The proposed formulation seems to be fully consistent with respect to all the aspects of the linear wave body 

interaction problem, including the evaluation of the internal loads. The fundamental difference between the formulation 

proposed in [1] and the formulations proposed in [2] is related to the proper accounting for the coordinate systems in which 

the body deformations are defined and in which the external forces are expressed. The main point is that both the normal 

vector and the mode shape vector do not change in the body fixed coordinate system while the gravity force vector does, 

and this fact seems to not be correctly accounted for in the previous work discussed in [2]. However, in spite of the 

demonstration made in [1] the proposed expression for the restoring stiffness seems to not be fully accepted by the 

community, and the purpose of the present work is to validate the proposed expressions for restoring stiffness numerically. 

Description of the flexible body motions and deformations 

The motion of the flexible floating body is described by six rigid body motions and the flexible deformation modes around 

the rigid body position. Reference is made to Figure 1 where the two relevant coordinate systems (earth fixed and body 

fixed) are also introduced. 

 
 

Figure 1: Motion of the flexible body and the different coordinate systems. 

 

The total displacement {𝒖} of the point attached to the body is decomposed into its global rigid body part {𝒖𝑟} and its 

generalized deformation part {𝒖𝑓} so that the instantaneous position in the earth fixed coordinate system becomes: 

 

{𝒓} = {𝒓𝐺} + {𝒖} = {𝒓𝐺} + [𝑨]{𝒖
′} = {𝒓𝐺} + [𝑨]({𝒖𝑟

′ } + {𝒖𝑓
′ }) (1) 

 

The body deformation vector {𝒖𝑓
′ } is represented as a sum of the 𝑁𝑓 modal contributions described by their space dependent 

mode shapes 𝒉𝑓𝑖
′ (𝒖𝑟

′ ) = ℎ𝑓𝑖𝑥′
′ 𝒊′ + ℎ𝑓𝑖𝑦′

′ 𝒋′ + ℎ𝑓𝑖𝑧′
′ 𝒌′ and their time dependent modal amplitudes 𝜒𝑓𝑖(𝑡) : 

 

{𝒖𝑓
′ (𝒖𝑟

′ , 𝑡)} =∑𝜒𝑓𝑖(𝑡){𝒉𝑓𝑖
′ (𝒖𝑟

′ )}

𝑁𝑓

𝑖=1

= [𝓱𝑓
′ ]{𝝌𝑓} (2) 

 

where [𝓱𝑓
′ ] is the 3 × 𝑁𝑓 matrix which columns contain the 3 components of the mode shape vectors and {𝝌𝑓} is the vector 

of the corresponding modal amplitudes.  

When the problem is linearized, it is possible to introduce the concept of the generalized modes by rewriting the rigid body 

motion in its modal form. Within that concept, the instantaneous position of the point attached to the body is given by: 

 

{𝒓} = {𝒓𝐺0} + {𝒖0} + {𝒓𝐺
(1)} + [𝜽(1)]{𝒖0} + [𝓱0𝑓

′ ]{𝝌𝑓
(1)} = {𝒓0} + [𝓱0

′ ]{𝝃} (4) 

 

where {𝒓𝐺
(1)}, {𝜽(1)} and {𝝌𝑓

(1)} are the modal amplitudes (rigid and flexible) and they are collected altogether in vector {𝝃}. 



 
Abstract for 40th IWWWFB, Shanghai, China, 2025 

 

External loading in calm water and the restoring stiffness matrix 

The calm water case is of concern only, so that the total external loading {𝓕′} is composed of the gravity loading {𝓕𝑔′} and 

the hydrostatic pressure loading {𝓕ℎ𝑠′}. The gravity force is independent of the body instantaneous position, and it always 

acts in the direction of the acceleration of gravity. On the other hand, the direction of the pressure forces is defined by the 

normal vector on the wetted body surface so that its direction changes when body moves. These two facts have important 

consequences on the description of the external loading in the respective coordinate systems (earth fixed and/or body fixed). 

After the linearization, it is common to write the external loads in the following form: 

 

{𝓕′} = {𝓕𝑔′(0)} + {𝓕𝑝′(0)} + {𝓕𝑔′(1)} + {𝓕𝑝′(1)} = {𝓕𝑔′(0)} + {𝓕𝑝′(0)} − ([𝑪]𝑔 + [𝑪]𝑝){𝝃} = {𝓕′(0)} − [𝑪]{𝝃} (5) 

 

where the matrix [𝑪] is called the restoring stiffness matrix. 

The following expressions are obtained for the external loading of the i-th mode : 

 

𝐹𝑖
𝑔′(1)

= 𝑔∭ [{𝒉0𝑖
′ }𝑇([𝜽(1)] + ∇𝒖𝑓

′ ) + {𝒖𝑓
′ }
𝑇
[∇𝒉0𝑖]

𝑇] {𝒌}𝜌𝑚d𝑉0
𝑉0

 (6) 

   

𝐹𝑖
𝑝′(1)

= −𝜌𝑔∬ [𝑧(1){𝒉0𝑖
′ }𝑇 + 𝑧(0) ({𝒉0𝑖

′ }𝑇 [∇𝒖𝑓
′ − [∇𝒖𝑓

′ ]
𝑇
] + {𝒖𝑓

′ }
𝑇
[∇𝒉0𝑖

′ ]𝑇)] {𝒏0}d𝑆0
𝑆0

 (7) 

 

where 𝑖 goes from 1 to 𝑁 = 6 + 𝑁𝑓 , 𝑧(0) is the initial vertical position of the point attached to the body, and: 

 

𝑧(1) =∑𝜉𝑗

𝑁

𝑗=1

ℎ0𝑗𝑧
′      ,     [𝜽(1)] =∑𝜉𝑗[∇𝒉0𝑗

′ ]

6

𝑗=1

     ,     {𝒖𝑓
′ } = ∑𝜉𝑗{𝒉0𝑗

′ }

𝑁

𝑗=7

 (8) 

 

The elements of the restoring stiffness matrix can be deduced as follows: 

 

𝐶𝑖𝑗
𝑔
= 𝑔

{
 
 

 
 ∭ {𝒌}𝑇[∇𝒉0𝑗

′ ]{𝒉0𝑖
′ }𝜌𝑚d𝑉0

𝑉0

, 𝑗 = 1,6

∭ {𝒌}𝑇({𝒉0𝑖
′ }∇𝒉0𝑗

′ + [∇𝒉0𝑖
′ ]{𝒉0𝑗

′ })𝜌𝑚d𝑉0
𝑉0

, 𝑗 > 6
 (9) 

   

𝐶𝑖𝑗
𝑝
= −𝜌𝑔

{
 
 

 
 ∬ ℎ0𝑗𝑧

′ {𝒉0𝑖
′ }𝑇{𝒏0}d𝑆0

𝑆0

, 𝑗 = 1,6

∬ [ℎ0𝑗𝑧
′ {𝒉0𝑖

′ }𝑇 + 𝑧(0) ({𝒉0𝑖
′ }𝑇 (∇𝒉0𝑗

′ − [∇𝒉0𝑗
′ ]

𝑇
) + {𝒉0𝑗

′ }
𝑇
[∇𝒉0𝑖

′ ]𝑇)] {𝒏0}d𝑆0
𝑆0

, 𝑗 > 6
 

  (10) 

Numerical validation of the restoring stiffness matrix 

Test case 

The numerical example which we chose for the validation is the rectangular barge from [3] and only six modes of motions 

are considered: heave, pitch and the first four vertical bending modes i.e. (𝜉3 , 𝜉5 , 𝜉7 , 𝜉8, 𝜉9 , 𝜉10 ). 
 

  
 

Figure 2: Hydroelastic barge. 

 

Methodology 

The validation of the restoring stiffness matrix is performed by comparing the results obtained from equations 9 and 10 to 

the restoring coefficients obtained by direct calculations. In direct calculations, one can integrate the pressures, and gravity 

loads on the deformed hydrodynamic model and project them on the modal basis. Once the modal total force is obtained 
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when deforming the hydrodynamic model on each mode, the restoring coefficients for each deformation mode can be 

expressed as the ratio between the resulting modal forces and the applied modal amplitude.   

 

For exemplification purposes, Figure 3 depicts the considered barge, which is subjected to hydrostatic pressure and gravity 

loads when it is deformed considering only the first vertical bending mode. The hydrostatic force acting on the body is 

evaluated numerically using equation 11. Similarly, the loading induced by the acceleration of gravity is evaluated as shown 

in equation 12.  

 

𝐹𝑖
𝐻𝑠 = −𝜌𝑔∬𝑧{𝒉𝑖

′}𝑇{𝒏′}d�̃�
𝑆

 (11) 

   

𝐹𝑖
𝐺 = 𝑔∭{𝒉𝑖

′}𝑇{𝒌}𝜌𝑚d𝑉
𝑉

 (12) 

 

 

 
 

Figure 3: Illustration of the first vertical mode 

 

The modal total force is evaluated at various modal amplitudes to determine the influence of the modal amplitude on the 

restoring coefficient, as depicted in Figure 4. However, as the restoring matrix proposed in equations 9 and 10 is linearized, 

the directly calculated modal restoring coefficients at small modal amplitudes will be used for comparison purposes 

hereafter.  

 

 
 

Figure 4: Variation of the modal total force for the first elastic mode at various modal amplitudes 

 

Results 

Based on the methodology described in the preceding sections, the restoring stiffness is evaluated by direct integration and 

using the linearized formulation proposed in equations 9 and 10 for all six motions. The numerical results are summarized 

hereafter.  

 

Direct integration (eq. 11 and 12) Linearized restoring stiffness (eq. 9 and 10) 
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From the numerical results depicted above, it can be observed that the restoring coefficients evaluated by the two methods 

are in perfect agreement apart from the coupling term between heave and the first elastic mode, where a relative error of 

6% is observed. This is most probably related to numerical errors in the direct integration approach.  

 

Furthermore, in order to better understand the importance of different components in the pressure part of the linearized 

restoring stiffness matrix, for 𝑗 > 6, equation 9 can be split into three components, as follows: 𝐶𝑖𝑗
𝑝
= 𝐶𝑖𝑗

ℎ𝑠 + 𝐶𝑖𝑗
ℎ𝑛 + 𝐶𝑖𝑗

ℎℎ. 

Where 𝐶𝑖𝑗
ℎ𝑠 represents the pressure variation contribution, 𝐶𝑖𝑗

ℎ𝑛 is the contribution due to the change of normal on the 

deformed model, and 𝐶𝑖𝑗
ℎℎ represents the mode variation contribution. The three terms are evaluated numerically and their 

contribution as percentage of the total 𝐶𝑖𝑗
𝑝

 is presented below. 

 

𝐶𝑖𝑗
ℎ𝑠 = −𝜚𝑔∬ ℎ0𝑗𝑧

′ {𝒉0𝑖
′ }𝑇{𝒏0}𝑑𝑆0

𝑆0

 

Contribution of 𝐶ℎ𝑠 to 𝐶𝑝 

 

𝐶𝑖𝑗
ℎ𝑛 = −𝜚𝑔∬ 𝑧(0){𝒉0𝑖

′ }𝑇 (∇𝒉0𝑗
′ − [∇𝒉0𝑗

′ ]
𝑇
) {𝒏0}𝑑𝑆0

𝑆0

 

 

Contribution of 𝐶ℎ𝑛 to 𝐶𝑝 

 

𝐶𝑖𝑗
ℎℎ = −𝜚𝑔∬ 𝑧(0){𝒉0𝑗

′ }
𝑇
[∇𝒉0𝑖

′ ]𝑇{𝒏0}𝑑𝑆0
𝑆0

 

 

Contribution of 𝐶ℎℎ to 𝐶𝑝 

 
 

Discussions & conclusions 

The previously proposed methodology for evaluating the generalized restoring stiffness of deformable bodies is verified 

and validated through direct calculations. Numerical results show that the restoring stiffness matrix can be consistently 

evaluated accounting for the effect of pressure variation as well as for the normal and mode variations for both the rigid 

and elastic modes. Moreover, it is shown that for the considered flexible barge, the normal and mode variation contributions 

play a significant role to the total restoring stiffness matrix. Their importance is about 50% for the coupling terms between 

the rigid and elastic modes, and about 25% for the terms of the restoring matrix between the elastic modes. 
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