
Three alternative linear free-surface boundary conditions for flows around ships

Jiayi He & Francis Noblesse Shanghai Jiao-Tong University hejiayifans@163.com

Highlights: Computations of the flow velocity created by a simple analytically-defined ship-hull surface with a
sharp wedge-like bow and a round stern in the infinite-gravity or zero-gravity limits are presented to illustrate
basic numerical and theoretical issues associated with the linearization of the free-surface boundary condition
about the ‘infinite-gravity flow’ around a ship, also called ‘double-body flow’ around a ship-hull surface and its
free-surface mirror image, or the linearization about the ‘zero-gravity flow’.

1. Introduction

The flow around a ship that advances at a constant speed V ≡ (V, 0,0) through regular waves or in calm
water is commonly evaluated within the framework of potential-flow theory. Moreover, the boundary condition
at the free surface in this classical approach is applied at the undisturbed free-surface plane z = 0 and is
linearized as done by Kelvin and Michell in their pioneering studies of ship waves. This usual Kelvin-Michell
linearization of the nonlinear free-surface boundary condition assumes that the velocity ∇Φ ≡ (ΦX ,ΦY ,ΦZ) of
the flow disturbance due to a ship that advances in calm water or through regular waves is significantly smaller
than the ship speed V . Thus, the Kelvin-Michell linearization is based on the assumption

‖∇Φ ‖ � V . (1)

An alternative linearization of the free-surface boundary condition has been considered, and is used in [1-5]
where a detailed review of the related literature can also be found. This alternative linearization is based on
the assumption that the flow velocity ∇Φ created by a ship is significantly smaller than the velocity ∇Φ∞−V
of the (apparent total) flow created by the ship in the infinite-gravity limit g = ∞ , in which the free surface
becomes a rigid wall. The ‘base-flow’ ∇Φ∞ is identical to the unbounded flow around the double-body hull
surface ΣH ∪ΣH

∗ where ΣH denotes the mean-wetted ship-hull surface and ΣH
∗ is its mirror image with respect

to the free-surface plane Z = 0 . Thus, the double-body linearization assumes

‖∇Φ ‖ � ‖∇Φ∞ −V ‖ . (2)

For common slender ships, the double-body flow velocity ∇Φ∞ is significantly smaller than the ship speed V
except in small regions around the points where the ship bow and stern intersect the free-surface plane Z = 0 ,
which are stagnation points of the double-body flow. Thus, one has

‖∇Φ∞ ‖ � V (3)

and the double-body linearization is practically equivalent to the classical Kelvin-Michell linearization except
in small regions around the bow and the stern of the ship.

Linearization of the free-surface boundary condition about the double-body flow may arguably be realistic
for slow ships with blunt bows. However, this linearization may be ill suited in practice because the double-body
flow varies very rapidly in the vicinity of the points where the bow and the stern of a ship intersect the plane
Z = 0 . Reliable numerical evaluation of the derivatives of the double-body flow velocity ∇Φ∞ that are required
in the free-surface boundary condition associated with linearization about the double-body flow can then be
difficult, and a thorough study of the influence of the discretization of the free surface in the vicinities of a
ship bow and stern is required to verify that significant numerical inaccuracies do not occur; such thorough
numerical studies do not appear to have been reported.

Moreover, the nonlinear potential flow at a ship bow greatly differs from the stagnation flow associated with
the double-body flow-model. In particular, the analysis given in [6-12] for a ship that steadily advances in calm
water shows that the actual (nonlinear) free-surface flow in the vicinity of a ship bow greatly differs from the
uniform stream (−V, 0 , 0) or the double-body flow (Φ∞X −V ,Φ∞Y , 0). This result is at variance with both the
Kelvin-Michell and the double-body flow linearization assumptions (1) or (2). Linearization about the double-
body flow, which is nearly identical to the uniform flow (−V, 0 , 0) except in the vicinities of the points where
the bow and the stern of a ship intersect the free surface as was already noted, is then no better justified than
the Kelvin-Michell linearization, which has the huge merit of being based on a uniform flow that is unaffected
by numerical inaccuracies.

The Rankine component GR in the fundamental Rankine-Fourier decomposition 4πG = GR + GF of the



Green function G(ξ,x) for potential flow around a ship steadily advancing through regular waves is given by

GR∼ −1/r +1/r′ as r′→ 0 and as r′→∞ where (4a)

r ≡
√
h2 + (ζ − z)2 and r′≡

√
h2 + (ζ + z)2 with h2≡ (ξ − x)2 + (η − y)2 , (4b)

as is shown in e.g. [13-15]. Thus, the Green function that satisfies the Kelvin-Michell linear free-surface boundary
condition for ship motions in regular waves is asymptotically equivalent, in both the near-field limit r′→ 0 and
the far-field limit r′→∞ , to the Green function associated with potential flows in the zero-gravity limit g = 0
and the corresponding conditions φ = 0 and G = 0 at z = 0 , rather than the infinite-gravity limit g = ∞ and
the conditions φz = 0 and Gz = 0 at z = 0 as is assumed in the linearization about the double-body flow. This
basic theoretical result suggests that linearization based on the assumption

‖∇Φ ‖ � ‖∇Φ0 −V ‖ (5)

where the flow velocity ∇Φ0 is associated with the zero-gravity limit g = 0 arguably is no less justified than the
double-body linearization (2). Indeed, the bow waves created by fast ships with fine bows in the ‘overturning
bow-wave regime’ considered in [9-12] suggest that linearization about the ‘zero-gravity flow velocity’
∇Φ0 might be reasonable. In particular, the nonlinear flow analysis considered in [6,7] for a ship in calm water
shows that the bow-wave profile is tangent to the stem line, in accordance with the zero-gravity flow model.

Thus, it evidently is useful to consider the flow velocities

∇Φ∞ ≡ (Φ∞X ,Φ
∞
Y , 0) and ∇Φ0 ≡ (0 , 0 ,Φ0

Z ) (6)

created at the free-surface plane Z = 0 by a ship hull that has a pointed wedge-like end and a round end. The
weakly-singular boundary integral equations given in [16] can be used to evaluate the flow potentials Φ∞ and
Φ0 with satisfactory accuracy. However, accurate numerical evaluation of the corresponding flow velocities (6)
outside the ship is more difficult. To avoid numerical inaccuracies, an analytical expression for the velocity
potential Φ of the flow created by a ship that steadily advances along the positive X axis is then used here to
evaluate the flow velocities (6) for a simple analytically-defined ship-hull surface ΣH with a sharp wedge-like
bow and a round stern. Specifically, the approximation proposed by Hogner and defined in [17-19] is applied.

2. Illustrative application based on the Hogner slender-ship approximation

Hogner’s approximation explicitly determines the flow created by a ship that steadily advances in calm water
in terms of the Froude number F and nx, i.e. the speed V and the length L of the ship, and the ship-hull
form. Despite its simplicity, Hogner’s approximation is realistic and widely useful. In particular, the Hogner
approximation is shown in [20] to be useful for hull-form optimization and indeed has been widely applied for
that purpose. Hogner’s approximation is also useful and has been applied to analyze the influence of wave
interferences on the far-field wave pattern of a ship steadily advancing in calm water in [21-25] . Moreover, the
Hogner approximation is used to investigate how to filter inconsequential short ship waves in [26-28] .

In the infinite-gravity limit g =∞ , the Hogner flow potential Φ ≡ VLφ is given by

φ∞(x) =
−1

4π

∫
ΣH∪ΣH

∗

da(ξ)
nx(ξ)

r
(7a)

where r is defined by (4b). Moreover, x ≡ X/L ≡ (x, y, z ≤ 0) denotes a flow field point, ξ ≡ (ξ, η, ζ ) is a
point of the double-hull surface ΣH ∪ ΣH

∗ and nx(ξ) is the x−component of the unit vector n ≡ (nx, ny, nz)
that is normal to ΣH ∪ ΣH

∗ and points outside the double body. At a point (x, y, z = 0) of the plane z = 0, the
velocity ∇xφ

∞(x) that corresponds to the Hogner potential (7a) is given by{
φ∞x (x, y)

φ∞y (x, y)

}
=

1

2π

∫
ΣH

da(ξ)

{
x− ξ
y − η

}
nx(ξ)

(h2 + ζ2 )
3/2

and φ∞z = 0 . (7b)

In the zero-gravity limit g = 0, the Hogner approximation (7a-b) is modified as

φ0(x) =
−1

4π

∫
ΣH

da(ξ) nx(ξ)

[
1

r
− 1

r′

]
(8a)

φ0
x = 0 , φ0

y = 0 and φ0
z(x, y) =

1

2π

∫
ΣH

da(ξ)
−ζ nx(ξ)

(h2 + ζ2 )
3/2

(8b)

where r and r′ are defined by (4b).
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Figure 1: The horizontal flow velocity components φ∞x (top row) and φ∞y (center row) and the vertical velocity
φ0
z (bottom row) defined by (7b) and (8b) are depicted in the figure for a simple analytically-defined wall-sided

hull surface ΣH that has rectangular framelines, a uniform draft d ≡ D/L = 0.04 , a beam b ≡ B/L = 0.14 , a
sharp wedge-like bow and a round stern. The figure shows that the (nondimensional) flow velocity components
φ∞x , φ∞y and φ0

z are significantly smaller than 1 (i.e. the ship speed V ) except in small regions in the vicinities
of the ship bow and stern. In particular, the flow velocity φ∞x is negligible except in very small regions centered
at the bow and stern, and varies rapidly near these two stagnation points of the double-body flow. Similarly,
the vertical flow velocity φ0

z is negligible except in a thin layer along the ship waterline near the bow and stern.

3. Conclusions

Two conclusions can be drawn from this study: (i) The results depicted in Fig.1 show that a thorough
numerical study of the influence of the discretization of the free surface in the vicinity of a ship bow and stern
is necessary if the free-surface boundary condition is linearized about a ‘base flow’ taken as the ‘infinite-gravity
double-body flow’ or as the ‘zero-gravity flow’. (ii) The nonlinear analysis of ship bow waves previously reported
in [6-12] suggests that these two alternative linear free-surface boundary conditions may not offer benefits over
the classical Kelvin-Michell linearization, which evidently is incomparably simpler and ultimately seems likely
to be better suited and preferable for practical applications.
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