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Highlights

e A fully nonlinear potential model is developed to simulate propagation of focused wave groups over
a varying bathymetry.

e Second-order free waves and bound harmonics are decomposed from the nonlinear surface eleva-
tions.

1. Introduction

Understanding the underlying mechanisms of the generation of oceanic freak waves is important for
forecasting and mitigating such natural disasters. One potential mechanism that has been investigated
recently is nonlinear wave interaction with abrupt depth transitions (ADTSs) (Li et al.l [2021). Due to
free surface nonlinearity, significant higher harmonics may be generated from wave-bottom interactions,
increasing the probability of occurrence of large waves and wave resonances. The waves may be the super-
position of components from reflection, dispersion by depth change and nonlinear wave-wave interaction,
making it a complex wave system. An accurate nonlinear model is needed to capture all components.
To investigate the nonlinear effect, separating the subharmonic and superharmonic components is also
challenging. This work develops an efficient fully nonlinear potential flow model for simulating wave evo-
lution over arbitrary bottoms. A conformal mapping method is employed to solve the two-dimensional
boundary value problem. Focused wave groups are used as incoming waves. A submerged step is used
to represent the ADTs. A four-phase manipulation technique by [Feng et al.| (2020) is implemented to
decompose higher harmonics, and a Continuous Wavelet Transform (CWT) is employed to further de-
compose the higher bound (locked) and free waves. The spectral analysis and the separation techniques
allow us to investigate the evolution of individual harmonics passing the submerged step in detail. Wave
flume tests were carried out to validate the model.

2. Method

2.1. Ezxperimental set-up

A rectangular step with a length of 2.4 m and a height of 0.24 m was submerged to form two water
depth transitions, as shown in Fig. The wave flume at the Hydrodynamic Laboratory at Southern
University of Science and Technology is 20 meters long, 0.8 meters wide, and 1.2 meters deep. The
water depth over the top of the step is 0.12 m, constituting one third of the incident water depth
h = 0.36 m. Twenty capacitive wave gauges were placed along the x—axis in the same direction with
wave propagation. A wave absorber located at the end of the wave flume is to minimize the reflected
waves from the end. Focused wave groups were generated by a piston wavemaker. A phase manipulation
approach was implemented to the wavemaker signals to prescribe the incident wave phases.

2.2. Mathematical formulation

A two-dimensional computational model is developed in this work to model wave propagating over
varying bottoms using the conformal mapping method (Fig. . In the potential flow framework, the
fluid is assumed to be incompressible, inviscid and the flow irrotational. The governing equations for the
velocity potential ¢(z,y,t) and the boundary conditions are as follows
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Figure 1: Sketch of the test setup and the snapshot.
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where n(z,y,t) is the surface elevation and and g is the acceleration due to gravity. The subscript
represents the derivative with respect to the variable. The bottom shape is described by a function h(z),
which can be arbitrary in the model.
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Figure 2: Transformation in the conformal mapping method.

A conformal mapping method is employed to solve the above problem. For the free surface and the
bottom, a transformation is executed between the two domains: the physical domain and the mathe-
matical domain. The physical plane (z,y,t) is mapped into the mathematical plane (&, (,t) using the
complex analytic function Z = X(&,(,t) + iY(&,(,t). The boundary value problem is solved in the
mathematical plane, where the upper and lower boundaries are horizontal lines. The boundaries at the
free surface Y'(£,0,¢) and the bottom Y (£, —h,t) are expanded as a Fourier series in the mathematical
domain

Y(E0,8) = 3 Vae™E (=0, (5)
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where the Fourier coefficients of the bottom bathymetry and the free surface are denoted by B,, and Yy,
respectively. The numbers of Fourier terms are truncated based on the convergence. Using the Cauchy-
Riemann relations X¢ = Y and X = —Y¢, we can easily obtain a new form of (X,Y") satisfying Eqgs.
and @ With the transformation of the boundary conditions in the two domains, the original governing
equations in the physical domain can be described in the mathematical domain. The free surface and
the bottom are transformed into two parallel lines, making it easy to solve the Laplace equation. The
governing equations in the mathematical domain become
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where the Jacobian on the free surface is denoted by J = 3:? +y§, and C(t) is a time-dependent arbitrary

function that can be incorporated into ¢;. q(t) is defined as q(t) = m {xghm[d)—f, 0] + yg(dj—f)}, with Ay, a
Hilbert-transform-like operator. A pseudo-spectral method is used to discretize the free surface and the
bottom boundaries by the Discrete Fourier Transform. In this study, the initial surface elevation and
potential is prescribed based on the linear focused wave group model. A fixed-point iteration is used for
time marching and to update the bathymetry h(&,t) and the free surface in the simulation. Details on
the computation can be found in Wu et al.| (2024).

3. Results

A simple convergence study is firstly carried out to optimize the number of Fourier terms used for
discretization of free surface and the bottom. Computational results show that over 50 terms or points per
wavelength are sufficient to capture higher harmonic components up to fourth order. The computational
results are then validated by the test results. A comparison of surface elevations for the test and the
model in the temporal-spatial domain is shown in Fig. [3] at the selected gauges. A good between the
measured and the computed is found. It is seen that the wave profiles at the designed focused positions
x ="7.7(—1.0) m become asymmetric with a sharper crest, presumably due to nonlinear effect.
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Figure 3: Surface elevations for the case f, = 0.9 Hz.

Figure[d] displays the evolution of the amplitude spectrum for cases with two different peak frequencies
fp =0.8 Hz and f;, = 0.9 Hz. The horizontal axis refers to the normalized frequency f/f,. It is clear that
the second harmonic component corresponding to the frequency range near f/f, = 2 becomes significant
at the first ADT z = —1.2 m. Third and higher harmonics can also be noticed on the step. This
highlights the effect of higher harmonics potentially induced by the ADTs.
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Figure 4: Spectral variation in space, (a) f, = 0.8 Hz, ka = 0.08; (b) f, = 0.9 Hz, ka = 0.08.
With the harmonic decomposition method using the phase manipulation, the second bound and free

waves are difficult to be separated directly. The frequencies of the two components are both twice the
fundamental harmonic. However, their wavenumbers are different because only the second free wave



satisfies the dispersion relation. Fig. [f] illustrates the distribution of wavenumbers of the focused wave
groups in six time instants. It was found that the second bound wave with 2k; was generated at the
deeper water region before the group encountered the step. The second free waves kg) were induced when
the wave group propagated over the first ADT at ¢/7 = 8.10. With the Continuous Wavelet Transform
(CWT) technique, the elevations of the second bound and free waves can be further separated. The
results for the case f, = 1.0 Hz are shown in Fig. |§| where the shaded area stands for the step. A sharp
increase of the second bound waves at the first ADT is found. Then the second free wave is induced on

the step which however is less significant than the bound one. The two components become comparable
behind the step.
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Figure 5: Distribution of wavenumber at different time moments for the case f, = 0.9 Hz.
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Figure 6: Distribution of amplitudes of second bound and free waves for the case f, = 1.0 Hz.

4. Conclusions

The nonlinear propagation of focused waves over the ADTSs is investigated numerically and experi-
mentally. A fully nonlinear potential model is established utilizing the conformal mapping method. To
capture the spectral evolution of higher harmonics, decomposition methods are employed to separate
the superharmonics and the free waves. The existence of a submerged step causes an increase in the
maximum amplitude and the higher harmonics. In the case of strong nonlinearity, higher order free
waves become significant. The increase in the second harmonic at the second ADT is mainly due to the
generation of free waves. The second bound wave reduces at the second ADT.
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