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1 INTRODUCTION
The wave-induced loads on slender bodies can be calculated using nonlinear wave kinematics,
through semi-empirical formulas for the inertia and drag components. However, for non-slender
floating structures, where diffraction and radiation forces are dominant, there is currently no simple
method to account for the forces induced by nonlinear waves explicitly. In the present study, the
fixed-body formulation introduced in Ref. [1] is extended to account for body motion. The model
uses the wave elevation and velocity potential from the nonlinear wave solver HOS-NWT [2] and
calculates the second-order force under the Pinkster approximation, based only on the output of a
first-order radiation-diffraction analysis. The extended formulation explicitly includes the 6 DoF
position and velocity, allowing force calculation for moving bodies.

2 FORMULATION FOR FIXED BODY
The fixed body formulation was presented in Ref. [1] and is outlined here as a starting point. A
global coordinate system xo = [xo, yo, zo] is considered, along with an inertial system located at
the position of the body at rest x̃ = [x̃, ỹ, z̃]. The incident free surface elevation ηI and velocity
potential ϕI at the still water level (SWL), defined at zo = 0, of a nonlinear wave field can be
written as a Fourier series in the wave number space k as

ηI(xo, t) =
∑
ℓ

Â(kℓ, t)e
−ikℓxo and ϕI(xo, t) =

∑
ℓ

B̂(kℓ, t)e
−ikℓxo (1)

where Â and B̂ are time-dependent modal coefficients for ηI and ϕI respectively and contain both
free and bound wave contributions. The summation covers both negative and positive integers with
k−ℓ = −kℓ, Â−ℓ = Â∗

ℓ and B̂−ℓ = B̂∗
ℓ . Following standard potential flow theory [3], the second-order

wave force on a fixed body will be
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where ϕ = ϕB = ϕI +ϕS is the total incident and scattered potential, S0 is the wetted body surface
up to the SWL, n is the vector normal to that surface, nz is its vertical component and WL is the
still waterline. The spatial structure of ϕI and ηI at a given time instant is identical to the case of
linear waves. This permits the expression of the potential force, as

FP (t) = −ρ
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∂

∂t
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g
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∑
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X(kℓ)B̂t(kℓ, t)e

−ikℓxo (3)

where F(k) is the force transfer function obtained by radiation-diffraction analysis and B̂t are
the coefficients for the time derivative of the velocity potential, directly provided by HOS-NWT.
Ref. [1] showed that it is consistent with the so-called Pinkster’s approximation [4]. For all
quantities obtained through linear radiation-diffraction analysis, the dispersion relation is employed



to associate a wavenumber with a frequency, thus introducing a level of approximation. However,
since the time derivative in Eq. (3) is not linearly evaluated in the frequency domain as iω, but
explicitly obtained with the nonlinear wave solver as B̂t, the contribution of bound waves is taken
into account. The other two terms in Eq. (2) correspond to the quadratic pressure (QP) and the
waterline integral (WL). Linear radiation-diffraction analysis provides transfer functions for the
potential ϕ̂(k) and velocity ∇ϕ̂(k), which can be applied to the coefficients B̂(k, t) at every time
instant. Therefore, the integrals in Eq. (2), can be replaced by a double summation, which includes
the application of a quadratic transfer function (QTF) on pairs of B̂(k, t) at every timestep,
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with the QTFs being,

QQP = −1
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Given that the double summation is computationally expensive, the eigenvalue decomposition
method of the QTFs [5] is employed.

3 EXTENSION TO A MOVING BODY
If the body is free to move, a body-fixed reference frame x = [x, y, z] is defined and 6DoF motions
with respect to x̃ are considered as ξ = [ξ1, ξ2, ξ3] for translations and α = [α1, α2, α3] for rotations,
with the generalized vector ξ = [ξ,α]. Due to the motion of the body, the radiation potential ϕR

is introduced, along with an additional potential ϕM , whose role is to fulfil the second-order body
boundary condition and will be discussed at the end of the section. Hence, the total potential will
comprise

ϕ = ϕB + ϕR + ϕM = ϕRB + ϕM (6)

where ϕRB = ϕB+ϕR = ϕI+ϕS+ϕR. To approximate the force on the instantaneous body surface,
the velocity potential and normal vectors need to be Taylor-expanded around the mean body
surface. It is noted that since the fully nonlinear incident potential ϕI is available, no distinction to
orders for the potential itself has been made so far. However, to obtain a second-order consistent
expression of the force, products of ϕ, ξ and α of at least second order will be preserved. The
position and unit normal vectors then will be necessary up to only the first order and are given
below

x̃ = x+ ξ +ααα× x+O(ε2) and ñ = n+ααα× n+O(ε2) (7)

where ε is the order of magnitude for the leading order incident waves and body motion. Then the
Taylor-expanded potential can be written as,

ϕ(x̃) = ϕ(x) + (ξξξ +ααα× x) · ∇ϕ(x) +O(ε3) (8)

From the body boundary condition ñ · ∇ϕ(x̃) = ˙̃x · ñ, it can be proven that the additional
potential ϕM is of second order. Therefore, the second-order force will be

F =− ρ
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(9)



For the quadratic pressure and waterline integral terms, the analysis is similar to Eq. (4).
Taking as an example the former and developing the square for each potential,

FM
QP (t) = −1
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∇ϕB · ∇ϕB n dS − ρ

∫
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2
ρ

∫
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∇ϕR · ∇ϕR n dS (10)

Therefore, three components appear among which the first is identical to Eq. (4). For the other
two, a similar QTF-based strategy is devised. Since the 6DoF radiation velocity transfer functions
∇ϕ̂R are available by the radiation-diffraction output, the impulse response functions K(τ), where
τ denotes the time lag can be constructed. Then the radiation velocities can be evaluated as,

∇ϕR =

∫
τ
K(τ) · ξ̇(t− τ)dτ with K(τ) =

1

2π
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and the force in the second term can be evaluated as
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where underlined quantities denote vectors of all 6 DoFs. Through similar treatment, the third
term of Eq. (10) is expressed as in Eq. (13), while the same approach can also be applied to the
waterline integral. It is noted that ϕM does not contribute to those two terms, as it is of second
order.
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For the potential force, the terms up to the second order will be

FP (t) = −ρ
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(14)
In the first and second integrals, the contribution from ϕB can be calculated through Eq. (3), while
the contribution from ϕR can be obtained through convolution. The last term can be developed to
obtain the following expression for the diffraction and radiation potentials respectively,
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(15)
The former term can be directly calculated with known quantities, while the second also degenerates
to convolution terms. Regarding the contribution of ϕM to the potential force, it can be calculated
by determining only its normal derivative using Green’s theorem,

FM
P (t) = −ρ

∫
S0

ϕM,t n dS = −ρ

∫
S0

∂ϕM,t

∂n
ϕ̂
j
dS, (16)

where ϕ̂
j
is the 6DoF unit amplitude radiation potential. The normal derivative of ϕM can be

evaluated through the body boundary condition. This term is not yet included in the results below
but is part of our ongoing work. Throughout the abstract, only the derivation of the forces has
been demonstrated, but for moments the analysis is analogous.



4 RESULTS
The forces obtained from Eq. (9) are used in a time-domain code [6] to simulate the motions of
a containership for which model test results are available [7]. For a design wave and an irregular
JONSWAP sea state (Hs = 0.154 m, Tp = 1.74 m) the surge motion time series are shown in Fig.
1, along with the probability of exceedance (POE) curves for the latter. The numerical results
obtained with the proposed force model are labelled as Force-HOS. Moreover, a standard force
QTF is applied to the linearized wave amplitudes and the loads are used in the time-domain code.
The relevant results are denoted as Hydrostar after the employed solver [8]. It is demonstrated in
the two cases investigated, that the vessel’s motion is captured more accurately under the proposed
approach, which is principally attributed to the calculated second-order motions being implicitly
used in Eq. (9), through a fourth-order Runge-Kutta scheme, and the fully nonlinear wave field
calculated by the HOS model. The QTF approach with linear waves, although computationally
more efficient, evaluates the force through consideration of the linear motions. Thus, when second-
order motions are significant, as in the case of the large amplitude slow-drift oscillations of this
test, the instantaneous position is under-predicted. The same result is also depicted in the POE
plots where Force-HOS shows better agreement with the experimental results.

Figure 1: Surge time series in design wave (left), irregular wave (middle) and surge POE (right).
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