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1 INTRODUCTION

In 1847, Stokes[1] gave the existence of two-dimensional uniform propagating solutions,
known as Stokes waves. Later, Benjamin[2] demonstrated that wave trains in deep water are
unstable to modulational perturbations, such a phenomenon is called ”Benjamin-Feir”(BF)
instability or modulational instability.

Early studies about BF instability primarily neglected effects of dissipation and wind
forcing. Segur[3] proved that dissipation can stabilize the instability based on a damped ver-
sion of the nonlinear Schrödinger equation. This stabilization theory was validated by Ma[4]
through experiments. Kharif[5] showed that the wind speed strength influences modulational
instability and these results were validated by Touboul[6] using potential equations.

In this work, the fully nonlinear wave evolution equations are numerically solved, and
the long-time evolution of modulational instability wave trains under wind forcing and dis-
sipation effects is analyzed.

2 MATHEMATICAL FORMULATION

We consider the evolution of a two-dimensional gravity water waves with a free surface
in deep water under the effect of wind forcing and dissipation. The fluid is assumed to
be irrotational, inviscid and incompressible. Let z denotes the vertical coordinate, x the
horizontal coordinate, t the time, z = η (x, t) the free surface and Φ (x, z, t) the velocity
potential, respectively. The governing equation for the water waves is
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where Φs = Φ|z=η is the vertical velocity of the fluid at the free surface, g is the gravitational
acceleration, h is the water depth, Pwind is the pressure of wind forcing and ν, ρw is the eddy
viscosity and density of water, respectively. The numerical method used to solve Eqs. (1) in
this study is the Pseudospectral Fourier-Legendre method ( PFL method ) proposed by [7].



3 NUMERICAL RESULTS

In this work, we simulate the modulational Stokes wavetrain due to type I instabilities
under no wind action and five different wind speed conditions(1.4, 2.3, 3.2, 4.1, 5.0 m/s).
The initial condition is the same as [8]:
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where η0 [0.13, 9] is the fifth-order Stokes wave, 0.13 is wave steepness, 9 is the fundamental
wavenumber, and a0 = 0.13/9 is the initial amplitude of the fundamental wave.

Fig.1 presents spatial profiles of the free-surface elevation z = η at different times under
no wind action and wind speed of 4.1m/s. Compared to no wind forcing condition, the wave
height and the dominant wavenumber decrease remarkably under the wind forcing.

Figure 1: Variations of spatial profiles of free surface z = η with time under (a) no wind
action and (b) wind speed of 4.1m/s.

Fig.2 shows the time histories of amplitudes of wave components during evolution under
no wind action and wind speed of 4.1m/s. Under no wind action, the evolution can be simply
divided into the modulational stage (from 0 T to 800 T ) and the nonlinear interaction stage
(from 800T to 3000T ). Under wind forcing condition, the dominant wavenumber of the wave
trains transitions from k = 9 to k = 2. The amplitude of the largest wave component k = 2
increases to its maximum at t ≈ 3200 T , and then remains almost constant with time.

Variations of the dominant wavenumber of the wave trains during the evolution under dif-
ferent wind conditions are shown in fig.3. Under no wind action, the dominant wavenumber
decreases from k = 9 to k = 7. Under wind forcing conditions, the dominant wavenumber
of the wave trains decreases from k = 9 to k = 2, and increasing wind speed can accelerate
this process.

The total wave energy E is calculated as E =
∫
S0
Φsηtdx +

∫
S0
η2dx, where S0 is the

horizontal plane. Time histories of total energy during evolutions under different wind
conditions are shown in fig.4. Under no wind action, the wave energy continues to decrease
and the wave trains break twice during this process. Under wind forcing conditions, the total



Figure 2: Variations of wave amplitude of different wave components with time under (a) no
wind action and (b) wind speed of 4.1m/s. The vertical dashed lines refer to the time when
the wave breaking happened. Wave components below the horizontal dashed line during the
evolution process are hidden for clarity except for the initial wave components.

Figure 3: Variations of the dominant wavenumber during the evolution under different wind
forcing conditions.

wave energy grows continuously and then reaches a balanced state with periodic changes,
which means that the energy input by the wind balances the energy dissipation.

4 CONCLUTION

The evolutions of modulational instability wave trains with and without wind forcing
are obtained and studied. Time histories of the free-surface spatial profiles, different wave
component amplitudes, dominant wavenumber, and total wave energy are investigated. For
wave groups under no wind action, the wave trains break twice, the dominant wave number
decreases slightly and the wave energy decreases continuously. Under the wind forcing condi-



Figure 4: Variations of total wave enregy with time under different wind forcing conditions.

tions, the wave trains break frequently and the dominant wavelength increases remarkablely.
The total wave energy increases first and then reaches a balanced state. The present study
provides an analysis of the impact of wind on water wave evolution and these findings can
help better understand wind wave behaviour.
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