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1. Introduction
A floating elastic plate functioning as a photovoltaic (PV) system incorporates solar panels
onto flexible, floating structures that can adjust to wave dynamics. Kohout et al. [1] investi-
gated the dispersion of surface gravity waves by a configuration of floating elastic plates with
changing characteristics. Kohout and Meylan [2] developed a model for wave attenuation
involving numerous floating elastic plates in the frequency domain accommodating spring or
hinged border conditions. This paper analyses an infinite periodic elastic plate system using
the Bloch-Floquet theory. Using linear water wave theory, we compare the Bloch wavenum-
bers for different edge conditions. Following that, the potential solution is illustrated in the
periodic system.

2. Mathematical formulation
The present study illustrates the water wave interaction with a periodic array of moored
elastic plates over an impermeable seabed. The elastic plates are considered to be floating on
the water’s mean-free surface, extending infinitely in the y direction where l is the plate length
and d is the uniform spacing between two plates (Fig. 1). Considering the linear theory of
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Figure 1: Schematic representation of the
physical problem.

water waves, a potential flow-based math-
ematical model is developed for the mo-
tion of homogeneous gravity waves with
density ρ. The fluid is assumed to be
inviscid as well as incompressible. The
fluid’s velocity field is likely to be so de-
scribed as v⃗(x, z, t) = ∇Φ̃(x, z, t), where
Φ̃ denotes velocity potential. Following
time-harmonic motion, the velocity po-
tential can be written as Φ̃(x, z, t) =
Re{Φ(x, z)e−iωt} where ω is the angular
frequency. With the assumptions bouncy,
the velocity potential, Φ, satisfies the governing equation:

∆Φ = 0. (0.1)

The free surface boundary condition on the non-plate covered regions yields:(
∂

∂z
−K

)
Φ = 0, on z = 0, (0.2)

where K = ω2/g with g as the gravitational acceleration.
The linearised condition on the plate-covered surface is given by[

E
∂4

∂x4
+ 1− ϵK

]
∂Φ

∂z
= KΦ, (0.3)



where E = Ẽ/ρg is the flexural rigidity and ϵ = ϵp/ρ is connected to the mass-density of the
plate.

The plates are considered to be moored at the edges, which results in the boundary
conditions,

∂3Φ

∂x2∂z
= 0, and

(
E

∂4Φ

∂x3∂z
− Ed

∂Φ

∂z

)
= 0, on z = 0, x = 0, l, l + d, . . . . (0.4)

where Ed = 2(Sm/ρg) sin
2(ϑ) is a constant with Sm= mooring line stiffness, ϑ= static moor-

ing line angle ([3]). For Ed = 0, the edges convert to the free edges.
The bottom boundary condition is as follows:

∂Φ

∂z
= 0 on z = −h. (0.5)

2. Periodic array of plates
We plan to consider an infinite system of plates. Since the geometry is periodic, we may
invoke the Bloch-Floquet theory which allows us to consider just one periodic element of the
array (here we choose the 1st strip, i.e., D = {−d/2 < x < l + d/2,−h < z < 0}) provided
we introduce quasi-periodic boundary conditions on those fluid interfaces which connect one
cell to the next. We consider a periodic boundary condition following the Bloch-Floquet
theory,

Φ(l + d/2, z) = eiβ(l+d)Φ(−d/2, z),

∂Φ

∂x
(l + d/2, z) = eiβ(l+d)∂Φ

∂x
(−d/2, z),

(0.6)

where β is the complex Block wavenumber sought to be obtained.
The solution Φ(x, z) due to the spatial distribution, can be written as

Φ1 =
∞∑
j=0

(
Aj,1e

ikj(x+ d
2) +Bj,1e

−ikjx
)
Z1,j(z), (x, z) ∈ (−d/2, 0)× (−h, 0), (0.7)

Φ2 =
∞∑

j=−2

(
Aj,2e

ipjx +Bj,2e
−ipj(x−l)

)
Z2,j(z), (x, z) ∈ (0, l)× (−h, 0), (0.8)

Φ3 =
∞∑
j=0

(
Aj,3e

ikj(x−l) +Bj,3e
−ikj(x−l− d

2)
)
Z1,j(z), (x, z) ∈ (l, l + d/2)× (−h, 0), (0.9)

where the eigenfunctions are given by

Z1,j(z) = w
−1/2
1,j cosh kj(z + h), and Z2,j(z) = w

−1/2
2,j cosh pj(z + h), (0.10)

with wi,j =
h
2

(
1 +

sinh(2γi,jh)

2γi,jh

)
with γ1 = k, γ2 = p.

The wavenumbers k and p, satisfy the following dispersion relations:

D1(k) ≡ K − k tanh(kh) = 0, and D2(p) ≡ K − E(p)p tanh(ph) = 0, (0.11)



where E(p) = (Ep4 + 1 − ϵK). D1(k) has one pair of real roots of the form k = ±k0 and
infinitely purely imaginary roots k = ±ki, i = 1, 2, . . ., whereas D2(p) produces one pair
of real roots, denoted by ±p0; two pairs of complex conjugate roots, ±p−1,±p−2; and an
infinite number of purely imaginary roots, ±pi for i = 1, 2, . . ..

The eigenfunctions Z1,i are orthonormal as
0∫

−h

Z1,i(z)Z1,j(z) dz = δi,j. Using the matching

conditions Eq. (0.6) along with the orthogonality of the Z1,i(z) results in

eiβ(l+d)
(
Ai,1 +Bi,1e

ikid

2

)
=

(
Ai,3e

ikid

2 +Bi,3

)
,

eiβ(l+d)
(
Ai,1 −Bi,1e

ikid

2

)
=

(
Ai,3e

ikid

2 −Bi,3

)
,

 ⇒

Ai,3 = Ai,1e
i(β(l+d)− kid

2 ),

Bi,3 = Bi,1e
i(β(l+d)+

kid

2 ).

 (0.12)

Using Eq. (0.12) in the continuity of velocity and pressure along with the matching conditions
yields, (

Ai,1e
ikid

2 +Bi,1

)
−

∞∑
j=−2

(
Aj,2 +Bj,2e

ipj l
)
Wj,i = 0, (0.13)

ki

(
Ai,1e

ikid

2 −Bi,1

)
−

∞∑
j=−2

pj
(
Aj,2 −Bj,2e

ipj l
)
Wj,i = 0, (0.14)

eiβ(l+d)
(
Ai,1e

− ikid

2 +Bi,1e
ikid

)
−

∞∑
j=−2

(
Aj,2e

ipj l +Bj,2

)
Wj,i = 0, (0.15)

kie
iβ(l+d)

(
Ai,1e

− ikid

2 −Bi,1e
ikid

)
−

∞∑
j=−2

pj
(
Aj,2e

ipj l −Bj,2

)
Wj,i = 0, (0.16)

where Wij =
0∫

−h

Z1,jZ2,idz. Now, Eqs. (0.13) to (0.16) along with edge conditions Eq. (0.4)

construct a 4(N + 2)× 4(N + 2) sized system of equations.

3. Numerical results
Tables 1 and 2 presents the Bloch wavenumber β under two different edge scenarios. For
free edge case, β encompasses one negative real root β−0 along with β0 as a complex Bloch
wavenumber. As N increases, additional purely imaginary modes exists with (βn − βn−1) =
π/h for n = 1, 2, . . .. For moored edge conditions, all the roots shift to the complex plane.
Due to the moored edges, the elastic plate transfers more energy into the surrounding
medium. It shows that the damping due to the moored edges modifies the β in the complex
plane, signifying alterations in energy dissipation.

Figure 2 illustrates the velocity potential fields within the 0 < x/l < 1.5 range for a
plate length of l/h = 0.1 along the Bloch wavenumber β0. The edges are crucial in velocity
distribution, signifying wave energy dissipation. The free edge condition facilitates enhanced
wave energy transmission, evidenced by increased magnitudes in both cases. The moored
edge condition introduces damping, diminishing intensity, particularly in the real component
of Φ. The left edge affects an equal vertical velocity distribution along the boundary. In
contrast, the right edge has a complex distribution along the boundary.



Free edge condition
N = 1 −0.12 0.12 + 0.347i 0.08 + 0.474i − − − −
N = 2 −0.12 0.12 + 0.347i −0.001 + 0.626i 0.043 + 0.854i − − −
N = 3 −0.12 0.12 + 0.347i 0.626i −0.002 + 0.959i 0.001 + 1.211i − −
N = 4 −0.12 0.12 + 0.347i 0.626i 0.959i −0.001 + 1.281i −0.002 + 1.559i −
N = 5 −0.12 0.12 + 0.347i 0.626i 0.959i −0.001 + 1.28i 0.001 + 1.598i −0.003 + 1.894i
N = 6 −0.12 0.12 + 0.347i 0.626i 0.959i −0.001 + 1.28i 0.001 + 1.598i 0.003 + 1.914i

Table 1: Variation of βl for different N with free edge conditions E = 1.139h4, ϵ =
0.096, Kh = 1, Kl = Kd = 0.1 and Ed = 0.

Moored edge condition
N = 1 −0.129− 0.001i 0.109 + 0.321i 0.087 + 0.491i − − − −
N = 2 −0.126 0.117 + 0.347i −0.019 + 0.623i 0.047 + 0.863i − − −
N = 3 −0.125− 0.001i 0.122 + 0.35i −0.012 + 0.628i −0.011 + 0.969i 0.016 + 1.214i − −
N = 4 −0.124− 0.001i 0.124 + 0.35i −0.009 + 0.628i −0.007 + 0.967i −0.001 + 1.291i 0.002 + 1.561i −
N = 5 −0.124− 0.001i 0.125 + 0.349i −0.008 + 0.627i −0.006 + 0.965i −0.001 + 1.288i 0.005 + 1.605i 0.001 + 1.895i
N = 6 −0.124− 0.001i 0.125 + 0.349i −0.008 + 0.627i −0.006 + 0.965i −0.001 + 1.288i 0.004 + 1.604i 0.007 + 1.919i

Table 2: Variation of βl for different N with moored edge conditions with E = 1.139h4, ϵ =
0.096h, Kh = 1, Kl = Kd = 0.1 and Ed = 0.1l.
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Figure 2: Re(Φ) (upper two) and Im(Φ) (lower two) in the periodic cell with free edge
condition (left ones), moored edge condition (right ones) and the values E = 1.139h4, ϵ =
0.096h, Kh = 1, Kl = Kd = 0.1 and Ed = 0.1l.
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