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1 Introduction

We present a machine learning model for calculation of wave added resistance. The model
training is performed using a large set of pre-calculated added resistance curves covering a
broad range of ship hulls and operational conditions, i.e. forward speed, draft and relative wave
heading. The underlying hydrodynamic model is the classical strip-theory where the wave added
resistance is computed according to a modified version of Salvesen’s formulation. It is concluded
that the developed data-driven model is able to produce a non-linear mapping between a set
of operational conditions as well as the ship’s main particulars to the wave added resistance
coefficient.

2 Background

In both ship design and operation, an efficient and robust computation of the added resistance in
seafaring conditions is required. One use case in the field of ship operations is ship performance
analysis. Here, it is required to subtract the wind and wave added resistances from the total
resistance that has been calculated using the vessel’s operational data. The difference between
this in-service calm-water resistance, and the given calm-water resistance of the ship for its
newly-built condition, is in fact an indication of the increased frictional resistance due to marine
growth. Performance analysis is usually conducted for quite a number of vessels with only their
bulk geometrical data at hand. Similarly, voyage optimization requires a mathematical model
for ship’s excess resistance in heavy weather in order to determine a realistic fuel penalty used
as part of the overall objective function. In addition, the results are required in almost real time.
Therefore, performing a full added resistance computation, even for a known hull geometry, is
practically not viable. Motivated by these challenges, through couple of student projects, we
have developed some fast computational tools for estimation of wave added resistance based
only on the vessel’s bulk geometrical data. In one case, we computed the added resistance by an
interpolation method inside a pre-calculated database of curves. See for example [1]. Recently,
we have employed a machine learning model for fast calculation of wave added resistance [2]. The
motivation for revisiting this study is to incorporate results of a more advanced hydrodynamic
model as well as considering additional wave heading regimes, i.e. beam-to-following waves.
This model shows higher accuracy than our previous interpolation scheme and requires no
cumbersome storage of a database for the pre-calculated added resistance curves. Firstly, we
describe the underlying hydrodynamic formulations which has been applied for the training of
the model. In the following, we present some details of the developed model and the results.
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3 The Hydrodynamic Model

We employ the classical Salvesen-Tuck-Faltinsen (STF) strip theory [3]. An open-source MAT-
LAB implementation of this theory, called DTU StripTheorySolver, has been made available by
us [4]. In this solver, we have implemented two formulations for wave added resistance [5, 6].
One is based on Maruo’s method using the Kochin Function, and the other is according to a
modified version of Salvesen’s method. Our focus in this abstract is on the modified Salvesen’s
method based on the following equation

Rw = Fx = −ρ
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Here, the wave added resistance Rw is the mean second-order force Fx in x-direction, which is
obtained by an integration over body surface Sb. The combination of radiation and scattering
velocity potentials (the disturbance potential) is denoted by ϕB, and ϕ0 is the incident wave
potential, all in the frequency domain. The fluid density is ρ, the subscript n denotes a derivative
normal to the body surface, and the subscript x indicates the x-derivative. The asterisks indicate
the complex conjugate and ℜ takes the real part. The derivation of (3.1) is briefly described in
the following.

Generally, in the far-field method, the mean wave drift force is obtained through application
of the Reynolds Transport Theorem to the average rate of momentum change inside a closed
volume bounded by: the body surface, the free surface, the sea bed and a far-field control
surface. The resulting far-field integral can be computed using three methods. One approach
is to adopt an arbitrary far-field control surface where the fluid kinematics can be conveniently
computed. A more robust method is to apply the Kochin function and convert the far-field
integrals into their equivalents over the body surface. In the third method, Green’s second
identity is used to express the far-field integrals in terms of the body surface integrals as shown
in Eq. (3.1). Although this equation was derived many years ago, for example by Newman in
[7], it has largely remained unnoticed by the community. In 2023 workshop [8], we have revived
this equation and demonstrated its agreement with the Kochin Function method and the direct
pressure integration or the near-filed method. Note that for forward-speed cases where the
body is not submerged, one line integral and one free-surface integral should be added to (3.1)
depending on the type of linearization adopted (Neumann-Kelvin or double-body). This has
been fully derived recently by Kashiwagi in [9].

Now, inside the strip theory, the surface integrals in (3.1) can be approximated by a combi-
nation of a line integral over two-dimensional sections and a line integral along the ship length,
see [6] for the details. Salvesen in [10], neglects the second integral in (3.1), using a so-called
weak scatterer assumption, and invokes a long-wave assumption to express only the first integral
inside the STF strip theory. As a result, his final formulation for added resistance requires no
knowledge of the sectional velocity potentials. In [6], we have shown that much more accurate
results are achieved if none of these assumptions are adopted. We call this full strip-theory
rendering of (3.1) the modified version of Salvesen’s method.

4 The Data-driven Model

We have developed a multivariate regression model, which approximates a function f : Rn −→ R,
where n is the number of dimension of the model’s feature space. Herein, deep learning is
utilized, as the subsequent models are capable of handling high-dimensional, continuous and
non-linear data [11]. The used Deep Neural Network (DNN) is trained on simulated wave added
resistance results obtained from the DTU StripTheorySolver. The employed dataset includes 9



scaling variants derived from several parent hulls of tankers and bulk carriers, i.e. block coeffi-
cient CB ≥ 0.8. The slenderness ratio of the considered hull is Lpp/∇1/3 ∈ [3.42, 7.38], whereas
the beam-to-length ratio is B/Lpp ∈ [0.125, 0.25]. Furthermore, the operational conditions are
defined in terms of the Froude number Fn ∈ [0.0, 0.3], the wave encounter angle β ∈ [0.0, 180]◦,
and the non-dimensional wave frequency ω = ω

√
Lpp/g ∈ [1.45, 4.58]. The model’s feature

vector includes the above-mentioned variables (as well as the draft-to-length ratio) and the
used target variable is the wave added resistance coefficient Caw = LppRw/ρgB

2A2. Before
training both input and output were normalized, since neural networks are not scale invariant,
as opposed to, e.g., tree-based models. The final model architecture is composed of two hidden
layers with 64 neurons each. The dataset was split into 80% for model training and 20% for the
model assessment. Similar to [2], it is envisioned to perform hyperparameter tuning as well as
more advanced feature engineering for increased predictive accuracy.

5 Validation and Results

The model will be validated against out-of-sample hull geometries, including a bulk carrier and
a product tanker. For this part, the added resistance obtained from the proposed DNN model
will be compared with the corresponding value computed directly by the strip theory solver
using the detailed hull lines. These results will be presented during the workshop.

6 Conclusion

The developed machine learning model will able to reproduce the added resistance curves with
high accuracy. It requires only the bulk geometrical data (length, breadth, block coefficient,
slenderness ratio), and the operational condition (forward speed, draft, relative wave heading).
With respect to future work, the model training can be performed using more advanced hy-
drodynamic models instead of strip theory results, for example slender body theory or panel
methods.
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