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1 Introduction

A novel U-shaped oscillating water column device (UOWC) is proposed in this paper,
where the front bottom-standing wall is considered to be flexible rather than rigid. To
study the performance of the flexible UOWC, a theoretical model is developed using lin-
ear potential flow theory, dry mode expansion, and eigenfunction expansion methods. A
Galerkin approximation approach is adopted to deal with the strong singularities at the
sharp edges of the device’s front bottom-standing and front surface-piercing wall. Our
results show that three peaks of the frequency response of the maximum wave power
absorption efficiency can be obtained, two of which are determined by the natural fre-
quencies of the effective oscillating water column and the 1st natural mode of the flexible
wall, respectively, and the remaining one is due to wave near-trapping.

2 Mathematical model

Fig. 1 shows a sketch of the device studied in this paper. A flexible bottom-standing
wall with a height of l is placed in front of an OWC chamber in water depth h. The
OWC chamber is of width a with the draft of the front wall denoted as d1. The spacing
distance between the front wall and the flexible wall is b. A power take-off (PTO) system
consisting of a Wells turbine is installed at the top of the chamber to capture wave power,
and the PTO damping is denoted as cPTO.

Figure 1: Sketch of the U-shaped OWC consisting of a flexible bottom-standing wall.

The fluid is assumed to be incompressible and inviscid, the flow motion is irrotational
and described by a velocity potential Φ(x, z, t) = Re[ϕ(x, z)exp(−iωt)], where ω denotes



the angular frequency of the incident waves and t the time. Similarly, the dynamic
air pressure inside the chamber P (t) and the deflection of the flexible wall W (z, t) for
z ∈ [−h,−d0], where d0 = h−l, can be expressed as P (t) = Re[pexp(−iωt)] andW (z, t) =
Re[w(z)exp(−iωt)], respectively.

The velocity potential should satisfy the dynamic equation of the flexible wall

EI∂4w/∂z4 − ω2ρphpw = iωρ(ϕ|x=0− − ϕ|x=0+), (1)

where EI represents the flexural rigidity, in which E is the Young’s modulus of the wall
material, I = h3

p/12 is the area moment of inertia of the wall; hp the thickness of the
flexible wall; ρp density of the wall.

By using the dry mode expansion method, w(z) may be further expanded as w(z) =∑∞
n=1Wnwn(z), where Wn is the complex amplitude of the nth natural mode denoted

by wn(z). wn(z) satisfies ∂
4wn/∂z

4 − κ4
nwn = 0, where κ4

n = ω2
nρphp/(EI) and ωn is the

relative eigenfrequency, and the boundary conditions at the two ends of the flexible wall

wn|z=−h = ∂wn/∂z|z=−h = 0, and ∂2wn/∂z
2|z=−d0 = ∂3wn/∂z

3|z=−d0 = 0. (2)

The solution to the above gives

wn(z) = cos[κn(z + h)]− cosh[κn(z + h)]− ξn{sin[κn(z + h)]− sinh[κn(z + h)]}, (3)

where ξn = [cos(κnl) + cosh(κnl)]/[sin(κnl) + sinh(κnl)]; κn ∈ R+ are the solutions of
cosh(κnl) cos(κnl) + 1 = 0 and are numbered in ascending order of their magnitude.

The velocity potential is decomposed into an incident wave potential, ϕI , a diffracted
wave potential, ϕD, and a series of radiated wave potentials due to the air pressure change
inside the OWC chamber and the deflection of the flexible wall as

ϕ = ϕ−1 + pϕ0 +
∑∞

n=1
Ẇnϕn, (4)

where ϕ−1 = ϕI+ϕD, in which ϕI = −igAeikxcosh[k(z + h)]/[ωcosh(kh)], A is the incident
wave amplitude, k the wave number, and g the gravitational acceleration.

ϕ0 describes the fluid motion due to unit-amplitude of dynamic pressure change inside
the chamber in the absence of incident waves and deflection of the flexible wall; Ẇn =
−iωWn, and ϕn for n > 0 denotes the radiated wave velocity potential due to the unit-
amplitude of the velocity change of the flexible wall in the nth mode.

ϕ−1 shall satisfy the Laplace equation in the fluid domain with ∂ϕ−1/∂z|z=−h = 0
and ∂ϕ−1/∂z|z=0 = Kϕ−1|z=0, where K = ω2/g, and ∂ϕ−1/∂x = 0 on the walls of the
UOWC. Additionally, the far-field radiation boundary condition ∂ϕD/∂x = −ikϕD should
be satisfied at x → −∞.

The above-mentioned conditions should also be satisfied by ϕ0 except on the free
surface inside the chamber, z = 0, x ∈ [x1, x2] with x1 = b, x2 = a + b, with internal
boundary conditions

∂ϕ0/∂z = Kϕ0 + iω/(ρg). (5)

Note, ϕn for n > 0 satisfy the above-mentioned conditions with an exception at the
front bottom-standing wall, i.e., x = 0, z ∈ [−h,−d0], where ∂ϕn/∂x = wn(z).

The fluid domain is divided into three regions, Ω1 (x ∈ (−∞, 0−], z ∈ [−h, 0]), Ω2

(x ∈ [0+, x−
1 ], z ∈ [−h, 0]), and Ω3 (x ∈ [x+

1 , x2], z ∈ [−h, 0]). The expressions of the



velocity potential ϕn at these regions are therefore

ϕn =



∑∞

j=0
An,je

λjxZj(z) + δ−1,nϕI , ∈ Ω1∑∞

j=0

(
Bn,je

λjx + Cn,je
−λjx

)
Zj(z), ∈ Ω2∑∞

j=0
Dn,j

(
eλj(x−x2) + e−λj(x−x2)

)
Zj(z)−

iδn,0
ρω

, ∈ Ω3

(6)

where An,j, Bn,j, Cn,j, and Dn,j are unknown coefficients to be determined,

Zj(z) = cos[λj(h+ z)]/
√
Nj, Nj = 0.5 [1 + sin(2λjh)/(2λjh)] , (7)

in which λj are solutions of K + λjg tan(λjh) = 0, with λ0 = −ik corresponds to the
progressive waves, and λj ∈ R+ for j > 0 related to the evanescent waves numbered in
ascending order of their magnitude. The eigenfunctions Zj(z) form a complete set of
orthogonal functions over [−h, 0].

The fluid velocity and the hydrodynamic pressure are square-root singular at the edge
of a thin wall. We adopted the Galerkin approximation approach proposed by Porter &
Evans (1995) to incorporate the known null velocity potential jump and the square-root
behavior of velocity at the edge of a thin wall. The continuity conditions of the velocity
and pressure at the interfaces of the three regions should be satisfied and can be turned
into a system of algebraic equations. The unknown coefficients can be obtained after
solving the algebraic system numerically.

The upward flux at the water surface inside the OWC chamber due to the contri-
butions of ϕ−1, i.e., so-called the excitation volume flow, and the upward flux at the
water surface inside the OWC chamber due to the contributions of the radiated velocity
potential ϕn (n ≥ 0) can be written as

Fe,0 =

∫ x2

x1

∂ϕ−1/∂z|z=0dx = K

∫ x2

x1

ϕ−1|z=0dx,

FR
0,n =

∫ x2

x1

∂ϕn/∂z
∣∣
z=0

dx =

∫ x2

x1

[Kϕn|z=0 + δn,0iω/(ρg)] dx = −(c0,n − iωm0,n),

(8)

where c0,n and m0,n are the hydrodynamic coefficients related to the upward flux inside
the OWC chamber due to the radiated waves induced by the dynamic change of the air
pressure inside the chamber (n = 0) and the flexible wall’s motion in nth mode (n > 0).

The generalized wave excitation force acting on the nth mode of the flexible wall
(n > 0) and the wave radiation force acting on the nth mode of the flexible wall (n > 0)
due to radiated velocity potential ϕj (j ≥ 0) may be expressed as

Fe,n = iωρ

∫ −d0

−h

(ϕ−1|x=0− − ϕ−1|x=0+)wn(z)dz,

FR
n,j = iωρ

∫ −d0

−h

(ϕj|x=0− − ϕj|x=0+)wn(z)dz = −(cn,j − iωmn,j),

(9)

where cn,j and mn,j are the hydrodynamic coefficients related to the wave radiation force
acting on the nth mode of the flexible wall due to the radiated waves induced by the
dynamic change of the air pressure inside the OWC chamber (j = 0) and the oscillation
of the flexible wall in the jth mode (j > 0).



After multiplying wζ (ζ > 0) by the dynamic equation of the flexible wall, integrating
over z ∈ [−h,−d0] and utilizing the orthogonality of the natural modes, together with
the pneumatic power take-off (PTO) dynamic equation, we have

(cPTO + c0,0 − iωm0,0)p+
∑∞

n=1
(c0,n − iωm0,n)Ẇn = Fe,0,

Wζ(EIκ4
ζ − ω2ρphp)l + (cζ,0 − iωmζ,0)p+

∑∞

n=1
(cζ,n − iωmζ,n)Ẇn = Fe,ζ .

(10)

The time-averaged absorbed wave power Pe = 0.5cPTO|p|2 can be nondimensionalized
as wave power capture efficiency, η. An optimized PTO damping cPTO = copt can be
predicted, resulting in the maximum efficiency, ηmax.

3 Results

Fig. 2 illustrates a comparison between the performance of a flexible UOWC, a rigid
UOWC, in which the bottom-standing wall now is rigid EI/(ρgh4) = 106, and an OWC
with a rather small bottom-standing wall, l/h = 0.01, using ρp/ρ = 0.4526, hp/h =
0.0148, a/h = 0.4237, b/h = 0.2119, d1/h = 0.7615. There is merely one peak of the ηmax

curve in the computed range of wave conditions for the OWC case. A similar result is also
observed for the rigid UOWC case but with its position moving towards low frequencies
due to the increase of the length of the effective oscillating water column. As the front
bottom-standing wall becomes flexible, interestingly, three peaks of the ηmax curve are
observed, in which the first peak around kh = 0.65 is dominated by the natural frequency
of the effective oscillating water column, the third around kh = 1.96 is determined by
the natural frequency related to the 1st natural mode of the flexible wall, and the second
one at kh = 1.37 is due to wave near-trapping.

Figure 2: Frequency responses of (a) ηmax; (b) coptρ(g/h)
0.5; and (c) |p|/(ρgA), in which

|W1|/A for the flexible UOWC is also included. Flexible UOWC: EI/(ρgh4) = 0.0203,
l/h = 0.7096; rigid UOWC: EI/(ρgh4) = 106; OWC: l/h = 0.01.
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