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1 Introduction

The definition of an appropriate wave-breaking onset criterion is essential for the develop-
ment of highly nonlinear wave solvers. Barthelemy et al. (2018) proposed to use the ratio
of the fluid velocity and crest phase speed, which has been demonstrated to be relevant
in several configurations such as deep-water or depth-induced breaking. Then, accurately
and efficiently computing the instantaneous wave crest phase speed is crucial. However, it
appears challenging, particularly in multi-dimensional sea states. Seiffert et al. (2017) has
demonstrated that the Hilbert Transform Method (HTM) efficiently captures the wave
celerity for unidirectional irregular sea states. The present study extends the HTM to
multi-directional sea states. A comparison between the HTM and the conventional Crest
Tracking Method (CTM) reveals encouraging preliminary results. The numerical wave
model adopted in the present work, HOS-NWT, is a computationally efficient open-source
Numerical Wave Tank (NWT) based on the High-Order Spectral method, which has been
extensively validated (Ducrozet et al. 2012).

2 Methodology

The Crest Tracking Method (CTM) tracks every wave crest at every time step. Denoting
(xc(t), yc(t)) the crest locations, the corresponding phase velocity components in the x
and y-direction (cx and cy respectively) are computed by taking the temporal derivative
of those locations. The total wave crest phase velocity is therefore given by

cn =

√
(cx)

2 + (cy)
2 =

√
(dxc/dt)

2 + (dyc/dt)
2 (1)

Numerically, a least square method in time is utilized to evaluate the crest phase speed
from the successive individual crest locations {xc(ti−n), . . . , xc(ti−1), xc(ti)}. Those are
obtained by zero-crossing analysis together with a specific procedure to identify the wave
associated with a given crest. Additionally, to reduce numerical oscillations, a time
threshold Tth, is introduced to define the minimum time window for the least squares
fitting. This defines the minimum duration of an individual wave before computing its
crest phase speed. This is taken as Tth = Tc/16, with Tc the characteristic period of the
wavefield studied. The CTM is the most straightforward way to obtain the instantaneous
crest phase speed. However, it suffers from its numerical complexity, which makes it dif-
ficult to use for large-scale problems in multi-directional seas.

The so-called Hilbert Transform Method (HTM) is using the partial Hilbert transform
in space to compute the instantaneous wave number. Then, associated with the linear
dispersion relation, it is possible to evaluate the instantaneous phase speed. Seiffert
et al. (2017) has shown the efficiency of utilizing HTM to compute the crest phase speed



in unidirectional irregular sea states. However, in short-crested seas, the evaluation of
the instantaneous phase function is more complicated. In the following, the temporal
variable is treated as a constant since we only deal with the spatial variables, looking for
information on the field at every time instant ti. Therefore the three-dimensional wave
elevation η(x, y, t) reduces to two spatial dimensions η(x, y, ti). The partial and total
spatial Hilbert transforms of the wave elevation η(x, y, ti) are defined as

Hx[η(x, y, ti)] =
1

π
P

∫ ∞

−∞

η(x′, y, ti)

x− x′ dx′ ; Hy[η(x, y, ti)] =
1

π
P

∫ ∞

−∞

η(x, y′, ti)

y − y′
dy′ (2)

Hxy[η(x, y, ti)] =
1

π2
P

∫ ∞

−∞

∫ ∞

−∞

η(x′, y′, ti)

(x− x′)(y − y′)
dx′dy′ (3)

where P is the Cauchy principal value of the integral, Hxy[η] denotes the total two-
dimensional spatial Hilbert transform, Hx[η] and Hy[η] are the partial spatial Hilbert
transforms with respect to x and y, respectively. Omitting the time index ti for concise-
ness, for the two-dimensional signals, four complex signals are constructed:

Ψ1(x, y) = η(x, y)−Hxy[η(x, y)] + j(Hx[η(x, y)] +Hy[η(x, y)]) (4)

Ψ2(x, y) = η(x, y) +Hxy[η(x, y)]− j(Hx[η(x, y)]−Hy[η(x, y)]) (5)

Ψ3(x, y) = η(x, y) +Hxy[η(x, y)] + j(Hx[η(x, y)]−Hy[η(x, y)]) (6)

Ψ4(x, y) = η(x, y)−Hxy[η(x, y)]− j(Hx[η(x, y)] +Hy[η(x, y)]) (7)

where j is the unit imaginary number, j =
√
−1. Eqs.(4∼7) are rewritten as

Ψ1(x, y) = Ψ∗
4(x, y) = A1(x, y) exp{jφ1(x, y)} (8)

Ψ3(x, y) = Ψ∗
2(x, y) = A2(x, y) exp{jφ2(x, y)} (9)

where the superscript ∗ represents the complex conjugate, A1(x, y) and A2(x, y) are the
instantaneous amplitudes defined by

A1(x, y) =
√

(η(x, y)−Hxy[η(x, y)])2 + (Hx[η(x, y)] +Hy[η(x, y)])2 (10)

A2(x, y) =
√

(η(x, y) +Hxy[η(x, y)])2 + (Hx[η(x, y)]−Hy[η(x, y)])2 (11)

φ1(x, y) and φ2(x, y) are the instantaneous phases defined by

φ1(x, y) = arctan

(
Hx[η(x, y)] +Hy[η(x, y)]

η(x, y)−Hxy[η(x, y)]

)
(12)

φ2(x, y) = arctan

(
Hx[η(x, y)]−Hy[η(x, y)]

η(x, y) +Hxy[η(x, y)]

)
(13)

The free surface elevation can be written as a function of those amplitudes and phases

η(x, y) =
1

2
ℜ [A1(x, y) exp{jφ1(x, y)}+ A2(x, y) exp{jφ2(x, y)}] (14)

η(x, y) =
1

2
A12(x, y) cos(φ1(x, y) + φ2(x, y) + φ12(x, y)) (15)

where ℜ [·] is the function to take the real part. A12 represents an amplitude modulation
and φ12 a new phase, which are respectively defined by

A12(x, y) =

√
(A1(x, y))

2 + (A2(x, y))
2 + 2A1(x, y)A2(x, y) cos (φ1(x, y)− φ2(x, y))

φ12(x, y) = − arctan

(
A2 sin(φ1) + A1 sin(φ2)

A2 cos(φ1) + A1 cos(φ2)

)



Based on Eq.(15), the instantaneous phase function φ(x, y) of the two-dimensional wave
elevation η(x, y) is

φ(x, y) = φ1(x, y) + φ2(x, y) + φ12(x, y) (16)

This allows for the definition of the instantaneous wave number components in x− and
y−directions (kx and ky respectively) using the corresponding partial derivatives

kx(x, y, ti) =
∂φ(x, y, ti)

∂x
; ky(x, y, ti) =

∂φ(x, y, ti)

∂y
(17)

Therefore, the local wavenumber kn and direction θn can be evaluated as

kn(x, y, ti) =
√
k2
x + k2

y ; θn(x, y, ti) = arctan

(
ky(x, y, ti)

kx(x, y, ti)

)
(18)

Finally, it is possible to compute the instantaneous local crest phase speed using the
linear dispersion relation, h being the water depth, and g the gravitational acceleration

cn(x, y, ti) =

√
g · tanh (kn(x, y, ti) · h)

kn(x, y, ti)
(19)

3 Results and Conclusion

A comparison between the CTM and the HTM is conducted with the simulation of a
non-breaking directional focusing wave with HOS-NWT. We use the configuration reported
in Brandini & Grilli (2002). The length, width, and water depth of the NWT are set as
Lx = 10.0 m, Ly = 16.0 m and h = 1.0 m. The wavemaker motion is defined through the
surface elevation at its location x = 0

η(x = 0, y, t) =

Nθ∑
l=1

al cos [k(y sin θl − xf cos θl − yf sin θl)− ωt] (20)

where Nθ is the number of directions, al, k, ω are wave amplitude, wave number, and
angular frequency (ω = 2πf). The focusing location is defined by (xf , yf ). Besides, θl
is the propagating angle of each wave component and is uniformly distributed in the
range [−θmax, θmax]. The number of wave components is set to Nθ = 4, maximum angle
θmax = 25◦, amplitude al = 0.02 m, wave number k = 1.6866 m−1, and focusing location
xf = 7.45 m, yf = 8.0 m. In addition, the spatial discretization Nx = 120(kxmax ≈ 22k),
Ny = 40, and the HOS order is set as M = 5 in the HOS-NWT solver.

As an illustration, the wave crest phase velocity vectors, calculated by the CTM and
the proposed HTM at t = 6.80 s, are presented in Fig.(1). The HTM computes a phase
velocity at each spatial point, displayed here at the crests for each y−transect to validate
the direction evaluation. Visually, at the crest location, the evaluation by the HTM shows
encouraging results compared with the reference CTM. The detailed comparison of the
crest phase speed at the maximum wave elevation among the whole surface is displayed in
Fig.(1). The two methods overall agree well, with a far simpler implementation and com-
putational effort for HTM. The discrepancies may be attributed to the nonlinearity, the
HTM using linear dispersion relation. However, the computation by the CTM depends
on a least square fitting, which may also lead to discrepancies. In contrast, the evaluation
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Figure 1: (Left) Illustration of the crest (green triangles) phase speed vector at t =
6.8s. Comparison between CTM (green arrows) and HTM (purple arrows); magenta
lines represent the crest line. (Right) Comparison between cntrk, evaluated by the CTM,
and cnhil, computed by the HTM, at the location of the maximum wave elevation.

by HTM is not affected by the previous temporal information of the crest location and
can be understood as an instantaneous methodology.

Overall, implementing the Hilbert transform to compute the crest phase speed is suc-
cessfully extended to multi-directional sea states. The new methodology was tentatively
validated with the simulation of a directional focusing wave. Compared to the CTM, the
HTM is a computationally efficient, stable, and fully instantaneous method. In addition,
the HTM can visualize the wave phase speed in the whole domain instead of only at the
wave crest. As aforementioned, further validation is still required and will be presented at
the workshop, including different types of directional wave conditions: frequency focusing
as well as irregular sea states. This study is the preliminary step before the possible use
of HTM in a wave-breaking model for nonlinear potential flow solvers.
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