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Introduction

The mean drift force (MDF) acting on a floating structure plays an important role in the design of offshore
systems. Usually the primary focus is the total downwave MDF on an entire structure as it determines
the mooring system. If a structure consists of a number of elements, the MDF acting on an each element
is configuration dependent and not purely in the downwave direction, but, due to the multiple wave
interactions occurring among the elements, it also has a component perpendicular to the wave direction.
For offshore systems consisting of individually moored floating structures, e.g. wave energy converter
arrays or floating wind farms, the differences in the MDF acting on individual structures can lead to a
change of the spatial configuration of the array and significantly alter the first-order system response.

The mean drift force on structures has been studied for a long time [1–4]. The focus on the total
downwave MDF is reflected in the number of recent studies on the so-called cloaking [5–8], where the
goal is to eliminate the downwave MDF by surrounding a “target” body with scatterers. The effects of
the differences in the MDF acting on the individual bodies in these arrays were not studied.

Recently, Tokić and Yue [9] considered the so-called deviatoric mean drift forces in line arrays oriented
normally to the incident flow. They studied the equilibrium configurations of these line arrays with
respect to the deviatoric MDFs that act in the direction of the array axis, i.e. they obtained equilibrium
configurations of arrays constrained to remain in line. They showed that the deviatoric MDFs on each
body are significant (on the order of the downwave MDF on an isolated body) but that they cancel out
in equilibrium configurations.

Here, we look for true equilibrium configurations with respect to the deviatoric MDFs, i.e. those for
which all components of the deviatoric MDFs are zero, and we discuss their stability with respect to the
configuration perturbations.

Problem Formulation

We consider arrays AN of N fixed vertical bottom-mounted circular cylinders of radius a in a fluid of
constant depth h. The position xj of body Bj in an array is xj = (xj , yj), j = 1, . . . , N . The spatial
configuration C(b) of AN is, in general, described in terms of P configuration parameters b = (b1, . . . , bP ),
where P ≤ 2(N−1). We consider monochromatic waves (angular frequency ω, wavenumber k, amplitude
A) incident on the array in the context of linear potential theory (potential Φ = Re(φ e−iωt)), Fig. 1.

The mean drift force Dj(kh; C) = (Xj , Yj) on a body Bj in an array (j = 1, . . . , N) is a time-constant
nonlinear, second-order hydrodynamic force that is fully determined by the first-order potential φ
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where Sj is the mean wetted surface and Cj the mean waterline of Bj , and nH is the horizontal projection
of the surface normal n (pointing into the fluid). In general, the differences between Dj acting on
different bodies in the array would, if the bodies were not fixed, act to displace the bodies relative to
each other. Relative to a reference mean drift force Dr ≡ D1, we define the deviatoric mean drift force
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Figure 1: Left: Side view of the problem domain. Center: Mean drift force D0 on a bottom-mounted
isolated vertical cylinder (radius a/h = 0.3). Right: Normalized deviatoric force Q ≡ |Y1−Y2| in 2-body
arrays normally oriented to the incident wave as a function of inter-body spacing b [9].

Di(kh; C) ≡ Di+1 − Dr, i = 1, . . . , N − 1. While the MDF on an isolated cylinder D0(kh) is in the
direction of wave propagation and is strictly positive, Di generally has a non-zero component in the
cross-wave direction (i.e. perpendicular to the direction of propagation of the incident wave) due to the
wave interactions occurring in the array. For example, the deviatoric mean force occurring in 2-body
arrays normally oriented to the incident wave oscillates around zero (with O(1) magnitude), indicating
an infinite number of equilibrium configurations [9], Fig. 1. For convenience, we collect all Di in a single
deviatoric force vector Q.

We define an equilibrium configuration C∗ ≡ C(b∗), associated with the equilibrium configuration
parameters b∗, as the configuration for which Q(kh; b∗) = 0. The equilibrium configurations C∗ would
not be affected by deviatoric forces even if the bodies were free to move. For a given incident wave,
AN generally has many equilibrium configurations C∗,j (corresponding to equilibrium configuration pa-
rameters b∗,j , j = 1 . . .). The stability of C∗ can be assessed by considering configurations C(b) in the
neighborhood of b∗, i.e. the eigenvalues λ of the Jacobian ∂Q/∂b at b∗. An equilibrium configuration C∗
is stable if the real parts of all the eigenvalues are negative (Re(λi) < 0, i = 1, . . . , P ). Importantly, all
the deviatoric forces Q(b) are calculated for fixed configurations C(b), i.e. for zero mean body velocity.

The total complex potential φ is obtained using an exact multiple scattering wave-body interaction
model [10, 11], which expresses φ in terms of the incident and the scattered waves at each body using
the partial waves expansion. Enforcing the diffraction boundary condition ∂φ/∂n = 0 on every Bp in the
array leads to a linear system for the unknown vector of complex amplitudes cp of the scattered partial
waves

N∑
j=1

[
δjp − (1− δjp)Tj S

T
jp

]
cj = Tp d

I
p , p = 1, . . . , N , (2)

where Tj is the diffraction transfer matrix obtained for a body in isolation; δjp is the Kronecker delta
and (·)T denotes matrix transpose. The effect of array configuration is expressed solely through the
separation matrix Sjp(C), which depends only on the relative positions of the bodies Bj and Bp. The
size of the system M = N ×Nw depends on the number of bodies and the total number of partial waves
Nw. The expression (2) is in principle exact (other than the truncation to Nw partial waves), i.e. the full
diffraction problem is taken into account, including the effects of evanescent waves.

Once the multiple scattering problem (2) is solved, (1) can be expressed as Dp
ξ = cHp Fpξ cp, where

Dp
ξ is the MDF on Bp in ξ-direction (Dp

x ≡ Xp, D
p
y ≡ Yp), Fpξ is the configuration-independent MDF

quadratic transfer matrix in the ξ-direction calculated for a body in isolation, cp are the scattered wave

coefficients for Bp, and (·)H denotes the Hermitian transpose [9]. Note that since we require Dj on each
body rather than a whole structure, the far-field methods, which calculate the MDF on a whole structure,
are not applicable here [4].
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Figure 2: Left: The isosceles equilibrium configurations C∗,i of 3-body arrays. Right: The phase portrait
representation of Q. The stability of C∗,i is indicated with the corresponding symbol (symbols in green
correspond to stable C∗,i, purple for unstable; see legend). Top row: ka = 0.45; bottom row: ka = 0.75.

Results and Discussion

We first look for equilibrium configuration of 3-body arrays that are symmetric with respect to the incident
wave direction. While general 3-body arrays require four parameters to define the spatial configuration,
these isosceles configurations can be described using only two parameters b = (b1, b2). Here we choose
b1 = x2 and b2 = y2. Due to the symmetry, only two deviatoric force components Q1 = X2 − X1 and
Q2 = Y2 − Y1 need to be zero for Q = 0 for equilibrium configurations.

The equilibrium configurations C∗,j can be obtained by considering intersections of Q1 = 0 and Q1 = 0
contours in (b1, b2) space, Fig. 2. Despite the configuration class constraints, the resulting equilibrium
configurations are general and unconstrained because all components of the full deviatoric force vector Q
are zero. This is in contrast to the class-preserving equilibrium configurations of line arrays found in [9],
where the equilibrium was defined with respect to only the inline components of deviatoric force. With
the increase in wavenumber kh, C∗,j become more dense in (b1, b2) space. For a fixed kh, C∗,j are more
dense, in general, when the apex of the isosceles configuration is facing the incident wave (b1 > 0).

The stability of equilibrium configurations C∗,j with respect to the class-preserving perturbations
∆b = (∆b1, ∆b2) of isosceles configurations is shown in Fig. 2. Since the configuration parameters and
the deviatoric forces both have only two independent components, we can further classify the stability
of equilibria depending on the shape of the phase portrait (i.e. the trace and the determinant of the
Jacobian ∂Q/∂b). The obtained equilibria can be both stable and unstable, with the relative number of
unstable C∗,j increasing with kh. For lower kh, C∗,j are either saddles or spiral sources and sinks, while
pure sources and sinks appear for larger kh.

If the constraint to allow only for class-preserving perturbations is released, the stability character
of equilibrium configurations, in general, changes. The stability of C∗,j under independent (∆xj , ∆yj)
perturbations of each body is given in Fig. 3. Compared to the class-preserving perturbations, the relative
number of stable C∗,j is decreased in this case. While there are still stable and unstable C∗,j , some of
them have changed sign. We only specify general stability character of C∗,j under general perturbations
since the two-dimensional phase portraits of C∗,j are not applicable in the higher-dimensional case.

This has practical implications for individually moored A3 arrays as they are likely to undergo MDF-



Figure 3: Stability of isosceles equilibrium configurations C∗,j at ka = 0.75. Left: stability with respect to
the class-preserving configuration perturbations (same as in Fig. 2, with corresponding symbols). Right:
stability with respect to the general body position perturbations (green: stable; purple: unstable).

caused reconfigurations not constrained by any particular configuration class. As a result, they are
likely to converge to the equilibria that are stable with respect to general perturbations. We note that
the difference in the total downwave mean drift force among isosceles configurations studied here can
be as large as ±50%, so individually moored multi-body structures should take into account that the
design mean drift force load can significantly change if the array equilibrium is not stable with respect
to deviatoric mean drift forces.

As the number of bodies N in an array grows, the only equilibrium configurations are those that satisfy
Dj = 0, j = 1, . . . , N−1, i.e. the fully unconstrained cases. Special configuration classes of larger arrays,
i.e. those where the number of configuration parameters P < 2×(N−1), lead to overdetermined systems
so there are no class-preserving equilibrium configurations. However, the equilibrium configurations for
general unconstrained arrays still exist.

References

[1] H. Maruo. “The drift of a body floating on waves”. Journal of Ship Research 4 (1960), pp. 1–10.
[2] J. N. Newman. “The Drift Force and Moment on Ships in Waves”. Journal of Ship Research 11 (01)

(1967), pp. 51–60.
[3] G. Thomas. “The diffraction of water waves by a circular cylinder in a channel”. Ocean Engineering

18 (1-2) (1991), pp. 17–44.
[4] M. Kashiwagi. “Theoretical Study on Wave-Induced Pressure and Drift Force on a Vertical Circular

Column”. J. of the Japan Society of Naval Architects and Ocean Engineers 37 (2023), pp. 37–45.
[5] J. N. Newman. “Cloaking a circular cylinder in water waves”. European Journal of Mechanics -

B/Fluids 47 (2014), pp. 145–150.
[6] T. Iida, M. Kashiwagi, and G. He. “Numerical confirmation of cloaking phenomenon on an array

of floating bodies and reduction of wave drift force”. Int. J. of Offshore & Polar Eng. 24 (2014).
[7] G. Dupont et al. “Cloaking a vertical cylinder via homogenization in the mild-slope equation”.

Journal of Fluid Mechanics 796 (2016).
[8] Z. Zhang et al. “Numerical and experimental studies on cloaked arrays of truncated cylinders under

different wave directions”. Ocean Engineering 183 (2019), pp. 305–317.
[9] G. Tokić and D. K. P. Yue. “Equilibrium configurations of line arrays with respect to the deviatoric

mean drift forces” (under review).
[10] H. Kagemoto and D. K. P. Yue. “Interactions among multiple three-dimensional bodies in water

waves: an exact algebraic method”. Journal of Fluid Mechanics 166 (1986), pp. 189–209.
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