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HIGHLIGHTS In this work, we investigate the interaction between a flexural-gravity wave 
propagating along the interface between an elastic sheet covering the liquid surface and a bottom step 
representing abrupt depth transitions. Within the framework of the potential flow model and the 
Cosserat theory of hyperelastic shells, we establish a fully nonlinear solution using the integral 
hodograph method to determine the higher harmonics of the interface shape 

1 Introduction.  

The nonlinear interaction of gravity waves with varying bathymetry is one of the mechanisms 
leading to the development of large amplitude waves [1, 2]. These extreme waves exhibit strongly 
nonlinear behavior and generate higher harmonics, observable as secondary crests in the troughs of the 
main waves [3]. Earlier studies focused on the transmission of regular waves over a step of infinite 
length using direct measurements [4]. Massel [5] developed the second-order theory and derived 
expressions for both the linear and second-order super-harmonic components, determining the 
reflection and transmission coefficients of a long wave traveling over an infinite step. Li and others [6] 
extended Massel’s work to narrow-banded wave packets on the shallower side. 

In contrast to previous studies, we consider a somewhat more complicated case that includes an 
elastic sheet covering the liquid surface. Our objective is to study a flexural-gravity wave propagating 
over the step on the bottom of the channel in still water. We employ the integral hodograph method to 
derive the complex velocity potential, which explicitly incorporates the velocity magnitude at the 
ice/liquid interface and the slope of the bottom. The coupling of the elastic sheet and liquid solutions is 
based on the condition of equal pressure at the interface, stemming from both flow dynamics and elastic 
sheet equilibrium. The entire problem is reduced to a system of nonlinear equations in the unknown 
velocity magnitude at the interface, which is then solved numerically. 

2. Formulation of the problem.    

We consider a two-dimensional steady flow in a channel with a fixed obstruction on the bottom and a 
step moving together with the liquid downstream. The channel is covered by an elastic plate modeling 
an ice sheet. We define a Cartesian coordinate system 𝑋𝑋𝑋𝑋 with the origin at the center of the fixed 
obstruction. The flow far upstream and downstream is assumed to be uniform with velocity 𝑈𝑈 due to 
the motion of the bottom step with the same speed 𝑈𝑈. In the coordinate system attached to the moving 
bottom step, the same flow looks different. The liquid far from the step is at rest in both directions, but 
the obstruction moves upstream, generating a wave on the ice/liquid interface. A schematic diagram 
with the coordinate system attached to the fixed obstruction is shown in Figure 1𝑎𝑎. The liquid is inviscid 
and incompressible, and the flow is assumed to be irrotational, allowing us to use a potential flow model. 
The obstruction has a characteristic length 𝑎𝑎, the thickness of the sheet is 𝑏𝑏, and the height of the step 
is ℎ 

 
Figure 1: (a) physical plane; (b) parameter plane, or ζ - plane. 
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We introduce the complex velocity potential 𝑊𝑊(𝑍𝑍) = Φ(𝑋𝑋,𝑋𝑋) + 𝑖𝑖Ψ(𝑋𝑋,𝑋𝑋), comprising the velocity 
potential Φ(𝑋𝑋,𝑋𝑋) and the stream function Ψ(𝑋𝑋,𝑋𝑋), where 𝑍𝑍 = 𝑋𝑋 + 𝑖𝑖𝑋𝑋. The boundary-value problem 
for the velocity potential can be written as follows: 
 
(1) ∇2Φ = 0, ∇2Ψ = 0,    in the liquid domain; 

(2) 𝜕𝜕Φ
𝜕𝜕𝜕𝜕

= 𝜕𝜕Φ
𝜕𝜕𝜕𝜕

𝜕𝜕Y𝑏𝑏
𝜕𝜕𝜕𝜕

,  Ψ = 0,  on the bottom 𝑋𝑋𝑏𝑏(𝑋𝑋) of the channel 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 and 𝐹𝐹𝐹𝐹. 

(3) 𝜕𝜕Φ
𝜕𝜕𝜕𝜕

= 𝑈𝑈, Ψ = 𝑋𝑋𝑈𝑈,   0 ≤ Y ≤ ℎ,    on the moving side of the step EF. 

(4) 𝜌𝜌 𝑉𝑉2

2
+ 𝜌𝜌𝜌𝜌𝑋𝑋 + 𝑝𝑝𝑖𝑖 = 𝜌𝜌 𝑈𝑈2

2
+ 𝜌𝜌𝜌𝜌𝜌𝜌 + 𝑝𝑝∞,  on the ice liquid interface. 

 
Here, 𝑉𝑉 = |∇Φ| is the velocity magnitude, 𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑎𝑎 for the free surface, and 𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖(𝑋𝑋) for the 
presence of the ice sheet; 𝑝𝑝∞ = 𝑝𝑝𝑎𝑎 or  𝑝𝑝∞ = 𝑝𝑝𝑎𝑎 + 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝜌𝜌𝑏𝑏 is the pressure at infinity; 𝑝𝑝𝑎𝑎 is atmospheric 
pressure; 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖 is the ice density; 𝑏𝑏  is the thickness of the ice sheet, and 𝜌𝜌 is the gravity acceleration; the 
flow is steady; therefore, the value of the stream function at the interface is constant and equal to the 
flowrate across the channel Ψ = 𝑈𝑈𝜌𝜌; on the step 𝐹𝐹𝐹𝐹 the stream function takes the value Ψ = 𝑈𝑈(𝜌𝜌 −
ℎ). The elastic sheet is modelled using the Cosserat theory of hyperelastic shells  
 
(5)  𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑂𝑂 �𝑑𝑑

2𝜅𝜅
𝑑𝑑𝜕𝜕2

+ 1
2
𝜅𝜅3�+ 𝑝𝑝𝑎𝑎. 

 
where 𝑂𝑂 = 𝑂𝑂𝑏𝑏3/[12(1 − 𝜐𝜐3)] is the flexural rigidity of the elastic sheet, 𝜅𝜅 is the curvature of the 
interface, 𝑂𝑂 is Young’s modulus, and 𝜈𝜈 is Poisson’s ratio. Equation (5) corresponds to the inextensible 
and not prestressed ice sheet. 
 
Complex potential.  

We introduce the first quadrant as an auxiliary parameter plane, or 𝜁𝜁 − plane (see figure 1b), and 
determine two functions, which are the derivative of the complex potential, 𝑑𝑑𝑑𝑑/𝑑𝑑𝜁𝜁 , and the function 
of the complex velocity, 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. Then, the interface 𝑂𝑂𝐹𝐹 can be obtained in parameter form as follows: 

 
(6)  𝑑𝑑(𝜁𝜁) = 𝑑𝑑0 + ∫ 𝑑𝑑𝑑𝑑

𝑑𝑑𝜁𝜁′
/ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝜁𝜁′𝜉𝜉

0 .  
 

We apply the integral hodograph method (the expression for solving a mixed boundary value 
problem for a complex function in the first quadrant [7, 8] to determine the expression for the complex 
velocity  

(7) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣0�
𝜁𝜁−𝑎𝑎
𝜁𝜁+𝑎𝑎

𝜁𝜁+𝑏𝑏
𝜁𝜁−𝑏𝑏

𝜁𝜁+𝑖𝑖
𝜁𝜁−𝑖𝑖

𝜁𝜁−1
𝜁𝜁+1

𝑒𝑒𝑒𝑒𝑝𝑝 �1
𝜋𝜋 ∫

𝑑𝑑𝑑𝑑
𝑑𝑑𝜉𝜉

𝑓𝑓
𝑖𝑖 𝑙𝑙𝑙𝑙 �𝜉𝜉−𝜁𝜁

𝜉𝜉+𝜁𝜁
� 𝑑𝑑𝑑𝑑 − 𝑖𝑖

𝜋𝜋 ∫
𝑑𝑑 ln𝑣𝑣
𝑑𝑑𝑑𝑑

∞
0 𝑙𝑙𝑙𝑙 �𝑖𝑖𝑑𝑑−𝜁𝜁

𝑖𝑖𝑑𝑑+𝜁𝜁
� 𝑑𝑑𝑑𝑑�, 

 
where 𝑣𝑣0 is the velocity magnitude at point 𝑂𝑂, 𝛽𝛽(𝑑𝑑) is the velocity direction on the vertical side of the 
bottom step 𝑂𝑂𝐹𝐹, and 𝑣𝑣 = 𝑣𝑣(𝑑𝑑) is the velocity magnitude on the interface 𝑂𝑂𝐹𝐹′, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑒𝑒,𝑓𝑓 are the 
parameters in the 𝜁𝜁 −plane which are determined from the linear sizes of the obstruction and the bottom 
step.  

The argument of the complex function 𝑑𝑑𝑑𝑑/𝑑𝑑𝜁𝜁 on the bottom is equal zero (because the normal 
component of the velocity is zero) excluding the part 𝑂𝑂𝐹𝐹, where it is the function 𝛾𝛾(𝑑𝑑). Using the 
integral formula for solving uniform boundary-value for a complex given its argument on the real and 
imaginary axes of the first quadrant [7, 8], we obtain the derivative of the complex potential in the form  

 

(8) 𝑑𝑑𝑑𝑑
𝑑𝑑𝜁𝜁

= 𝐾𝐾
𝜁𝜁
�𝜁𝜁2−𝑓𝑓2

𝜁𝜁2−𝑖𝑖2
exp �− 1

𝜋𝜋 ∫
𝑑𝑑𝑑𝑑
𝑑𝑑𝜉𝜉

ln 𝜁𝜁2 − 𝑑𝑑2)𝑑𝑑𝑑𝑑𝑓𝑓
𝑖𝑖 �, 

 
where 𝐾𝐾 is the real constant. 

It is seen from (8) that the complex potential w(𝜁𝜁) has a logarithmic singularity at point 𝜁𝜁 = 0, or 
𝜁𝜁 exponentially grow as potential 𝜙𝜙  linearly increases. This causes difficulties in computations for 



distances |𝑋𝑋/𝜌𝜌| > 5.  We resolve this singularity by eliminating variables 𝜁𝜁, 𝑑𝑑 and 𝑑𝑑 from equations (6) 
- (8) using the expressions: 

 

(9)  
𝜁𝜁 = exp(𝜋𝜋𝑑𝑑�/2),        −∞ < 𝜙𝜙� < ∞,      0 ≤ 𝜓𝜓� ≤ 1,
𝑑𝑑 = exp(𝜋𝜋𝜙𝜙�/2),         −∞ ≤ 𝜙𝜙� < ∞,              𝜓𝜓� = 1,
𝑑𝑑 = exp(𝜋𝜋𝜙𝜙�/2) ,         −∞ ≤ 𝜙𝜙� < ∞,              𝜓𝜓� = 0.

� 

 
Figure 2. Parameter plane 𝑑𝑑� = 𝜙𝜙� + 𝑖𝑖𝜓𝜓� = 2

𝜋𝜋
ln 𝜁𝜁. 

 
By using (9), we obtain the complex velocity (7) and the derivative of the complex potential (8) as the 
functions of the variable 𝑑𝑑� , 
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣0��
1− exp[𝜋𝜋(𝜙𝜙�𝐴𝐴 − 𝑑𝑑�)]
1 + exp[𝜋𝜋(𝜙𝜙�𝐴𝐴 − 𝑑𝑑�)]

��
1 + exp[𝜋𝜋(𝜙𝜙�𝐵𝐵 − 𝑑𝑑�)]
1− exp[𝜋𝜋(𝜙𝜙�𝐵𝐵 − 𝑑𝑑�)]

��
1 + exp[𝜋𝜋(𝜙𝜙�𝐶𝐶 − 𝑑𝑑�)]
1− exp[𝜋𝜋(𝜙𝜙�𝐶𝐶 − 𝑑𝑑�)]

��
1− exp(−𝜋𝜋𝑑𝑑�)
1 + exp(−𝜋𝜋𝑑𝑑�)� 

× exp �
1
𝜋𝜋
�

𝑑𝑑𝛽𝛽
𝑑𝑑𝜙𝜙�

𝜙𝜙�𝐹𝐹

𝜙𝜙�𝐸𝐸
ln�

exp[𝜋𝜋(𝜙𝜙� − 𝑑𝑑�)] − 1
exp[𝜋𝜋(𝜙𝜙� − 𝑑𝑑�)] + 1

�𝑑𝑑𝜙𝜙� −
𝑖𝑖
𝜋𝜋
�

𝑑𝑑 ln 𝑣𝑣
𝑑𝑑𝜙𝜙�

∞

−∞
ln�

exp[𝜋𝜋(𝜙𝜙� + 𝑖𝑖 − 𝑑𝑑�)] − 1
exp[𝜋𝜋(𝜙𝜙� + 𝑖𝑖 − 𝑑𝑑�)] + 1

�𝑑𝑑𝜙𝜙�� 

 

(11)       
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝜁𝜁

𝑑𝑑𝜁𝜁
𝑑𝑑𝑑𝑑�

=
𝜋𝜋𝐾𝐾
2
�

1 − exp[𝜋𝜋(𝜙𝜙�𝐹𝐹 − 𝑑𝑑�)]
1 − exp[𝜋𝜋(𝜙𝜙�𝐸𝐸 − 𝑑𝑑�)]

exp �−
1
𝜋𝜋
�

𝑑𝑑𝛾𝛾
𝑑𝑑𝜙𝜙�

ln[exp(𝜋𝜋𝑑𝑑�) − exp(𝜋𝜋𝜙𝜙�)]𝑑𝑑𝜙𝜙�
𝜙𝜙�𝐹𝐹

𝜙𝜙�𝐸𝐸
� 

 
Finally, we obtain the derivative of the mapping function as the functions of 𝑑𝑑�   
 
(12)        𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑�
= 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑�
/ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 . 
 
System of equations.  
The governing equations (10) and (11) contain parameters 𝜙𝜙�𝐴𝐴, 𝜙𝜙�𝐵𝐵, 𝜙𝜙�𝐶𝐶,  𝜙𝜙�𝐸𝐸, 𝜙𝜙�𝐹𝐹 ,𝐾𝐾 and two unknown 
functions 𝛽𝛽(𝑑𝑑) and 𝛾𝛾(𝑑𝑑). The parameters 𝜙𝜙�𝐴𝐴, 𝜙𝜙�𝐵𝐵, 𝜙𝜙�𝐶𝐶 ,𝜙𝜙�𝐸𝐸 ,𝜙𝜙�𝐹𝐹 are determined using linear dimension of 
the obstruction and the step 
 
(13)       ∫ 𝑑𝑑𝑑𝑑

𝑑𝑑𝜙𝜙�
𝑑𝑑𝜙𝜙�1

𝑎𝑎,𝑏𝑏,𝑖𝑖,𝑖𝑖,𝑓𝑓 = 𝑆𝑆{𝐴𝐴𝐴𝐴,𝐵𝐵𝐴𝐴,𝐶𝐶𝐴𝐴,𝐸𝐸𝐴𝐴,𝐹𝐹𝐴𝐴}, 
 
where   𝑑𝑑𝑑𝑑

𝑑𝑑𝜙𝜙�
= � 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑�
�
𝑑𝑑�=𝜙𝜙�

, and 𝑆𝑆{𝐴𝐴𝐴𝐴,𝐵𝐵𝐴𝐴,𝐶𝐶𝐴𝐴,𝐸𝐸𝐴𝐴,𝐹𝐹𝐴𝐴} is the arclength from point 𝑂𝑂 to points 𝑂𝑂,𝑂𝑂,𝑂𝑂,𝑂𝑂,𝐹𝐹. 

The argument of the derivative of the mapping function along the vertical side of the step is equal 
to 𝜋𝜋/2. Taking the argument of (11), we obtain the relation between the angles 𝛾𝛾,  𝛽𝛽 on the vertical side 
of the step,   
 
 (14)      arg �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑�
�
𝑑𝑑�=𝜙𝜙�

= arg �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�
�
𝑑𝑑�=𝜙𝜙�

−  arg �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑑𝑑�=𝜙𝜙�

= 

 
= 𝛾𝛾(𝜙𝜙�) + 𝛽𝛽(𝜙𝜙�) = 𝜋𝜋/2,            𝜙𝜙�𝐸𝐸 < 𝜙𝜙� < 𝜙𝜙�𝐹𝐹. 

(10) 



The normal component of the velocity on the vertical side 𝑂𝑂𝐹𝐹 is 𝑣𝑣𝑛𝑛 = 1, because the step moves with 
the same velocity as the liquid. The tangential component 𝑣𝑣𝑑𝑑 is obtained as follows 
 

(15)      𝑣𝑣𝑑𝑑(𝑑𝑑) = 𝑅𝑅𝑒𝑒 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = 𝑅𝑅𝑒𝑒 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
𝑑𝑑�=𝜙𝜙�

𝑖𝑖�, 

 
where 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 𝑖𝑖 on the vertical side 𝑂𝑂𝐹𝐹. Then, using the definition of the angle 𝛾𝛾, we obtain 
 

(16)     𝛾𝛾(𝑑𝑑) = arctan 𝑣𝑣𝑛𝑛
𝑣𝑣𝑠𝑠

 = arctan� 1

𝑅𝑅𝑖𝑖�𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑|𝑤𝑤�=𝜙𝜙��
�. 

 
The system of equations (13)–(14) and (16) allows us to determine the parameters 𝜙𝜙�𝐴𝐴, 𝜙𝜙�𝐵𝐵, 
𝜙𝜙�𝐶𝐶 ,𝜙𝜙�𝐸𝐸 ,𝜙𝜙�𝐹𝐹 and the functions 𝛾𝛾(𝜙𝜙�) and 𝛽𝛽(𝜙𝜙�). The function 𝑣𝑣(𝜙𝜙�) is determined numerically. In 
discrete form, the solution is sought on two fixed sets of points: a set −𝜙𝜙�∗  <  𝜙𝜙�𝑗𝑗  <  𝜙𝜙�∗, 𝑗𝑗 =  1, . . . ,𝑁𝑁 
corresponding to the bottom of the channel and a set −𝜙𝜙�∗  <  𝜙𝜙�𝑖𝑖  <  𝜙𝜙�∗, 𝑖𝑖 =  1, . . . ,𝑀𝑀 corresponding 
to the interface; both sets of points 𝜙𝜙�𝑗𝑗 and 𝜙𝜙�𝑖𝑖 monotonically increase. By applying the dynamic 
boundary condition (4) at the points 𝜙𝜙�𝑘𝑘, 𝑘𝑘 =  1, . . . ,𝐾𝐾�, we can obtain the following system of nonlinear 
equations 
 
(17) 𝐹𝐹𝑘𝑘(𝑉𝑉�) = 𝑐𝑐𝑝𝑝𝑘𝑘(𝑉𝑉�) − 𝑐𝑐𝑝𝑝𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖(𝑉𝑉�) = 0,        𝑘𝑘 = 1, … ,𝐾𝐾�, 
 
where 𝑉𝑉� = (𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝐾𝐾�)𝑇𝑇 is the vector of the unknown velocities 𝑣𝑣𝑘𝑘; 
 
(18) – (19)    𝑐𝑐𝑝𝑝𝑘𝑘(𝑉𝑉�) = 1 − 𝑣𝑣𝑘𝑘2 −

2[𝑦𝑦𝑘𝑘(𝑉𝑉�)−1]
𝐹𝐹2

;  𝑐𝑐𝑝𝑝𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖(𝑉𝑉�) = 2𝑂𝑂 ��𝑑𝑑
2𝜅𝜅

𝑑𝑑𝑑𝑑2
�
𝑘𝑘

+ 1
2
𝜅𝜅𝑘𝑘3�. 

 
are the hydrodynamic pressure coefficient and the pressure coefficient due to the elastic sheet, 
respectively. The system of equations (17) is solved using Newton’s method. 
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