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1 Introduction

In recent times, there have been significant breakthroughs in the study of surface gravity
wave interaction with very large floating structures (VLFS) of various forms and geome-
tries. Additionally, these structures are proposed and constructed for floating airports,
floating offshore bases, storage facilities, and sustainable uses of ocean space to promote
the blue economy. Among floating structures of various configurations, circular struc-
tures are preferred for optimum utilisation of ocean space. Besides, circular structures
can be easily extended without affecting various hydrodynamic characteristics due to
structural symmetry. Furthermore, porous breakwaters are generally constructed to mit-
igate wave-induced forces on floating structures and create a calm zone in the vicinity of
the floating facility. In recent years, arc-shaped porous structures have been proposed to
improve protective effects and reduce the construction costs of complete porous cylindri-
cal structures. Zhai et al. (2022) analysed the diffraction problem of the interaction of
solitary waves with the combined asymmetric porous arc walls sheltering an impermeable
cylinder. Further, a recent study depicts that flexural gravity wave blocking may occur
when the floating elastic plate is under the action of higher lateral compressive stress. In
such a situation, the blocking/saddle point occurs, where the dispersion relation possesses
roots of multiplicity two/three for certain wave frequencies. Das et al. (2018) discovered
that the dispersion relation of flexural gravity waves has three propagating wave modes
within two different blocking points for certain fixed values of compressive force and fre-
quency. In the present study, a mathematical model is developed to study the interaction
of surface gravity waves with the dual porous arc-shaped bottom-mounted breakwater
(ABBW) enclosing a circular floating elastic plate. The role of flexural gravity wave
blocking in gravity wave interaction with a circular floating elastic plate is studied in the
presence of a pair of porous arc walls. Fourier-Bessel series type expansion formulae are
used to account for single as well as multiple propagating wave modes. Various hydro-
dynamic characteristics such as the hydrodynamic forces and moments acting on the arc
walls and the elastic plate are analysed.

2 Mathematical Formulation and solution method

In the present study, a mathematical model is developed to study the interaction of sur-
face gravity waves with the dual porous arc-shaped bottom-mounted breakwater (ABBW)
enclosing a circular floating elastic plate. The physical problem is considered in a three-
dimensional cylindrical polar coordinate system (r, θ, y) with r − θ being the horizontal
plane and the y− axis acting vertically downward from the mean sea level, as shown in Fig.
1.



Figure 1: Schematic diagram of wave interaction with
dual arc walls

Further, it is assumed that
the thickness of each ABBW is
considered negligible to incident
wavelength, and both the break-
waters are fixed rigidly at the sea
bed and are extended till the free
surface. The outer ABBW is sym-
metrically placed between θ = α1

and θ = 2π − α1 at a radial
distance r = a, while the inner
ABBW is placed at a radial dis-
tance r = b and between θ = α2

and θ = 2π − α2. Thus, the cen-
tral angles of the outer and inner
ABBWs are γ1 = 2π − 2α1 and
γ2 = 2π − 2α2, respectively. In further consideration, a circular elastic plate with radius
r = c is positioned to align its centre with the origin O. Therefore, the fluid domain
is divided into four sub-domains: Ωj for j = 1, 2, 3, 4. Moreover, the water depth is
assumed to be finite h, and the incident wave reaches the breakwaters, creating an angle
β with the x−axis, as shown in Fig. 1. Furthermore, it is assumed that the elastic
plate is thin, isotropic, and homogeneous and is acted on by the uniform lateral compres-
sive force N . Moreover, the fluid is assumed to be inviscid and incompressible, whereas
the flow is considered to be irrotational and simple harmonic in time with angular fre-
quency ω. Thus, there exists a velocity potential and surface displacements of the forms
Φj(r, θ, z, t) = ℜ{ϕj(r, θ, z)e

−iωt} and ζj(r, θ, t) = ℜ{ηj(r, θ)e−iωt} respectively. Thus, the
spatial velocity potentials ϕjs satisfy(

∇2
rθ + ∂2

y

)
ϕj = 0, for j = 1, 2, 3, 4, (1)

where ∇2
rθ ≡ ∂2

r + (1/r) ∂r + (1/r2) ∂2
θ . The velocity potential ϕj satisfies the linearized

free surface condition in the open water region and the sea bed condition, as in Duan
et al. (2012). Further, the linearized boundary condition in the circular plate-covered
region is obtained as
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2 + 1
) ∂ϕ4
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= − ω2

g
ϕ4 on y = 0, (2)

where D = EI/ρg, Q = N /ρg, ms = ρid/ρg with E being the Young’s modulus,
I = d3/12(1 − ν2) is the moment of inertia with d being the plate thickness, ν is the
Poisson’s ratio, ρi is the structural density, ρ is the fluid density. Moreover, the continuity
of pressure and velocity on the porous arc walls, along with the virtual dividing surface
and the floating elastic plate for j = 1, 2, 3 yields (Zhai et al. (2022))

ϕj = ϕj+1,
∂ϕj

∂r
=

∂ϕj+1

∂r
, on r = aj, −αj ≤ θ ≤ αj and 0 < y < h, (3)

with a3 = c and 0 ≤ θ ≤ 2π. Further, on the porous arc walls across the water depth
0 < y < h (as in Duan et al. (2012))

∂ϕj

∂r
=

∂ϕj+1

∂r
= iGjk0 (ϕj+1 − ϕj) on r = aj, αj ≤ θ ≤ 2π − αj, j = 1, 2. (4)



Moreover, across the interface of the floating plate and open water, the continuity of
pressure and velocity yields

ϕ3 = ϕ4,
∂ϕ3

∂r
=

∂ϕ4

∂r
at r = c, 0 ≤ θ ≤ 2π and 0 < y < h, (5)

where k0 is the wavenumber associated with the plane incident progressive wave and Gj

for j = 1, 2 are the porous-effect parameters of the outer and inner walls. Besides, the
elastic plate is assumed to be floating freely, which will yield the vanishing of the bending
moment and shear force at the plate edge as in Mondal et al. (2014). Further, the velocity
potential satisfies the far-field condition given by

lim
r→∞

√
r

{
∂(ϕ− ϕ0)

∂r
− ik0(ϕ− ϕ0)

}
= 0, (6)

where ϕ0(r, θ, y) is the spatial velocity potential associated with the incident plane pro-
gressive wave. In the subsequent discussion, we present the form of the velocity potentials
using the Fourier-Bessel type expansion formula.

The spatial velocity potentials ϕj(r, θ, y) satisfy the governing equation Eq. (1) along
with the boundary conditions as in Eqs. (2) and the far-field condition in Eq. (6) in
finite water depth, are given by
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where Jm(.) and H
(1)
m (.) are the Bessel function and Hankel function of the first kind of

order m respectively and ϵm being the same as defined earlier, whilst fi(y)’s and gi(y)’s
are the vertical eigenfunctions with ki and pi being the corresponding eigenvalues in
the open water and plate-covered regions respectively (Mondal et al. (2014)). Further,

A
(j)
m,i, B

(j)
m,i, C

(2)
m,i, D

(2)
m,i, C

(3)
m,i, and D

(3)
m,i are the unknown complex constants which are to

be determined. Using various conditions at the interface boundaries and edges of the plate
and the orthogonal property of the trigonometric functions and vertical eigenfunctions
in the open water region, a system of (4M + 2)× (3N + 4) linear equations are derived
after truncating the infinite series in m and i after M and N terms respectively, which
is solved using MATLAB for computing various physical results of interest. Besides, the
velocity potential ϕ4(r, θ, y) will be generalized to account for multiple propagating wave
modes during wave blocking and details will be discussed during the presentation.
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Figure 2: (a) Validation and (b) verification of the physical model.

3 Model validation

For validation of the numerical results, hydrodynamics forces acting on the breakwater
are computed and compared with the known results of a single rigid arc-shaped bottom-
mounted breakwater (Chu et al. (2014)). Various fixed parameters are considered as
α1 = 180◦, α1 = 120◦, G1 = G2 = 0, a = 150 m, b = 100 m and c = 50 m, h = 20 m,
H = 2 m. Further, the horizontal force |Fx2|/ρgb2H as in Fig. 2a is plotted for different
values of the incident wave angle θ. A good agreement is observed between the present
results and that of Chu et al. (2014) which depicts that our analytical model will be
useful and effective for studying the present problem related to different parameters.

Subsequently, a pair of rigid cylinders is considered around the floating elastic disk
under the porous condition G1 = G2 = 0 and the angles α1 = α2 = 0◦. The flow
distributions around the cylinders and the disk are exhibited in Fig. 2b. It is observed
that the incident wave is diffracted around the outer cylinder and that there is no wave
or plate excitation in the annular region between the two cylinders. Moreover, various
results on the role of the arc-shaped breakwaters in mitigating the wave-induced forces
on the floating plate will be presented in the workshop.
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