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Figure 1: Coordinate system and sketch of a flexible porous thin plate on a wave surface.

Introduction

The theory of flexible plates can be applied to models of floating solar panels, floating airports
or for other applications. Vibrational energy gives movement to the wave surface. When wet,
the structure vibrates with lower frequencies than when in vacuo. The paper by Korobkin et
al. (2023) discusses fundamental issues of free surface and flexible structure interaction in two
dimensions. The dry modes and wet modes are properly discussed, mainly in the context of
impact. There are no incoming waves.

Our study is concerned with thin rectangular plates with free edge conditions in three
dimensions exposed to incoming waves, where investigations seem to be few.

Meylan (1997) derived a variational equation which the plate-liquid system satisfied and pre-
sented a solution by the Rayleigh-Ritz method for the forced vibration of a thin plate floating on
the half space of an infinite liquid. The dry modes of rectangular plates were recently expressed
completely by Liao et al. (2021). We employ these modes to develop a complete hydrodynami-
cal theory of the wave-flexible-structure interaction including the coupled radiation-diffraction
problem. The formulation leads to a set of integral equations for the potentials on the wetted
side of the flexible plate. The Green function in three dimensions is implemented along the
floating geometry using the analysis and practical expansions developed by Newman (1985).

In the present analysis, introducing porosity of the plate represents a damping mechanism of
the local vibrations. This is included in the mathematical formulation. The effect is investigated
in three dimensions by calculations.

Mathematical formulation

We introduce a Cartesian coordinate system (x, y, z) with the surface on the xy-plane and z
vertically. The water depth is infinite. Polar coordinates are applied as (x, y) = R(cos θ, sin θ)
with radial distance R =

√
x2 + y2. The motion is assumed linear and time harmonic at the

frequency ω of incoming regular waves. The wavenumber is defined by the dispersion relation
k = ω2/g, where g is the gravitational acceleration. Time t and spacial variations are decoupled
in the plate-fluid system. Potential flow is applied in the fluid domain, hence the velocity field is
expressed as the gradient of the real part of the potential Φ(x, y, z, t) = ϕ(x, y, z)eiωt, i =

√
−1.



The modes of the plate. The plate is thin with zero moment and shear forces on the edges.
The bending stiffness is

D =
Eh3

12(1− ν2)
, (1)

where E is Young’s modulus, h is the plate thickness and ν the Poisson’s ratio. The vertical
displacement is defined as W (x, y, t) = w(x, y)eiωt and the physical displacement is the real part
of W . The Rayleigh-Ritz method is employed, where the displacement is expanded as by Liao
et al. (2021)

w(x, y) =
∞∑
i=0

∞∑
j=0

ξijfi(x)gj(y), (2)

with yet unknown modal weights ξij and beam functions fi, gj along the edges 0 < x < ℓx and
0 < y < ℓy, respectively. Rigid beam motions are described by f0 = 1 and f1 =

√
3(2x− ℓx)/ℓx.

Hence with wij = figj , the functions w00, w10 and w01 gives heave, pitch and roll. The flexible
beam functions are

fi(x) = cos

(
βi
ℓx

x

)
+ cosh

(
βi
ℓx

x

)
− δi

[
sin

(
βi
ℓx

x

)
+ sinh

(
βi
ℓx

x

)]
, for i = 2, 3, . . . ,

with δi = (coshβi− cosβi)/(sinhβi− sinβi) and βi is obtained from the characteristic equation
coshβi cosβi = 1 for i = 2, 3, . . . . An equivalent formulation exists for gj(y) with index j.
The rigid modes have eigenvalues β0 = β1 = 0 for i, j = 0, 1. The expansion (2) completely
describes the dry modes. The functions wij = figj are orthogonal with the inner product

⟨wij , wkl⟩ =
∫ ℓy
0

∫ ℓx
0 wijwkldS = S when i = k, j = l and 0 otherwise. S = ℓxℓy is the water

plane area.

Porous effects. These are modelled by a linear Darcy equation. The relative porous flow is
proportional to the pressure jump p across the plate, by Dokken et al. (2017)

αp =
∂Φ

∂z
− ∂W

∂t
, (3)

where α is a porosity parameter and ρα has dimension of time over length, where ρ is the mass
density of the fluid.

Radiation and diffraction. The potential is decomposed as ϕ = ϕD + ϕR. Radiation is
expressed as ϕR = iω

∑∞
i=0

∑∞
j=0 ξijϕij . Diffraction is expressed as ϕD = ϕ0 + ϕS , with ϕ0 =

a0(ig/ω) exp{−ik(x cos θ0 + y sin θ0) + kz} and ϕS describing far-field wave scattering. The
following boundary value problem is satisfied: ∇2ϕ = 0 for − ∞ < z < 0, −ω2ϕ + g∂zϕ =
0 at z = 0, ∂zϕ → 0 when z → −∞, ϕij → R−1/2Hij(θ)e

−ikR+kz when R → ∞, for i, j =
0, 1, . . . , ∂zϕij = wij − iωραϕij on the plate SB, ∂zϕD = −iωραϕD on the plate SB. The
potential is found by using Green’s theorem and the following Green function by Newman (1985)

G(x, y, z, x̄, ȳ, z̄) =
[
r2 + (z − z̄)2

]−1/2
+ kF (X,Z)− 2πike−ZJ0(X), (4)

where

F (X,Z) = (X2 + Z2)−1/2 − πe−Z (H0(X) + Y0(X))− 2

∫ Z

0
eη−Z(X2 + η2)−1/2dη, (5)

with r = (x − x̄, y − ȳ), X = kr, Z = k|z + z̄|. J0 and Y0 are the Bessel functions of zeroth
order, of first and second kind, respectively. H0 is the Struve function of zeroth order, of first
kind. We obtain the integral equation for the radiation potentials∫

SB

G (kϕij − wij + iωραϕij) dS = −2πϕij(x̄, ȳ, z̄), (6)



for (x̄, ȳ, z̄) on the wetted side of the plate SB. The integral equation accounts for the effects
of flexible modes wij and porosity through the parameter α. The diffraction potential is solved
likewise, except for the far field integral which yields an additional term −4πϕ0 on the left hand
side of the integral equation.

Variational equation and equation of motion. The principle of virtual work applied to
the free plate gives the following variational equation by Hildebrand (1965)

δ

∫
SB

1

2
D

(
W 2

xx +W 2
yy + 2νWxxWyy + 2(1− ν)W 2

xy

)
dS+

∫
SB

ρph
∂2W

∂t2
δWdS−

∫
SB

pδWdS = 0,

with fluid pressure given by linearized Bernoulli equation at the surface p = −ρ(∂tΦ+ gW ) and
ρp is the mass density of the plate. Seeking a minimum with respect to the modal weights gives
the equation of motion

DξklK̃ijkl − ρphω
2ξkl⟨wij , wkl⟩+ iωρ⟨ϕD, wij⟩ − ω2ρξkl⟨ϕij , wkl⟩+ ρgξkl⟨wij , wkl⟩ = 0, (7)

for i, j, k, l = 0, 1, . . . with definitions

K̃ijkl = E
(2,2)
ik F

(0,0)
jl + E

(0,0)
ik F

(2,2)
jl + ν(E

(2,0)
ik F

(0,2)
jl + E

(0,2)
ik F

(2,0)
jl ) + 2(1− ν)E

(1,1)
ik F

(1,1)
jl ,

where

E
(r,s)
ik =

∫ ℓx

o

∂rfi(x)

∂xr
∂sfk(x)

∂xs
dx, and F

(r,s)
jl =

∫ ℓy

o

∂rgj(y)

∂yr
∂sgl(y)

∂ys
dy, for r, s = 0, 1, 2,

and we recognize the inner product ⟨wij , wkl⟩ = E
(0,0)
ik F

(0,0)
jl . Rewriting the equation of motion

(7) into[
Kijkl + Cijkl − ω2Mijkl − ω2Aijkl + iωBijkl

]
ξkl = χij , for i, j, k, l = 0, 1, . . . , (8)

whereKijkl = σK̃ijkl is the stiffness tensor with σ = D/(ρg), Cijkl = ⟨wij , wkl⟩ is the hydrostatic
tensor, Mijkl = γ⟨wij , wkl⟩ is the mass tensor with γ = ρph/(ρg). Added mass and damping are

defined by aijkl = ρgAijkl and bijkl = ρgBijkl where −ω2Aijkl + iωBijkl = −ω2

g ⟨ϕij , wkl⟩, and
excitation is defined as Xij = ρgχij , where χij = − iω

g ⟨ϕD, wij⟩.

Results

The equation of motion (8) is solved for the weights ξkl. The response amplitude operators
ξij/a0, displacements and vibrations of the plate are obtained. a0 is the incoming wave ampli-
tude.

The shape of wet modes are independent of forcing and are found by solving the equation
of motion as an homogeneous eigenvalue problem. The corresponding eigenvalues of the system
represents the wet frequencies. The corresponding eigenvectors of the system represents the wet
coefficients used, together with the dry modes of the plate, in the expansion of mode shapes for
the wetted plate.

Parameters of interest are, first, the dimensionless bending stiffness Π1 = (D/ρgS2), and,
second, the dimensionless porosity Π2 = ρα

√
gℓx. Results are presented for plates with aspect

ratios ℓx/ℓy = 1/2 and ℓx/ℓy = 1, incoming wave angles of θ0 = 45deg and θ0 = 0deg, soft and
stiff plates, with or without porosity.

Figures 2 and 3 show that flexible modes are significant for soft plates. These modes are
triggered at relatively shorter wavelengths, which means that not only long waves but also
shorter waves exist in flexible structures. Increasing the stiffness of the plate reduces the ver-
tical displacement of the plate, while porosity both dampens and reduces the displacement of
the plate. Specifically, increasing the plate stiffness decreases the contribution to the plate’s
displacement from the flexible modes. On the other hand, increasing the porosity of the plate
seems to decrease the contribution of both the rigid and flexible modes, with pitch and roll
being reduced significantly. For softer plates, flexible modes are triggered for longer waves.



θ0 = 45deg θ0 = 0deg

Figure 2: Re{w(x, y)/a0} for kℓx = 10, i, j = 0, . . . , 7, ℓx/ℓy = 1/2, Π1 = 6.32 · 10−5, black
surface with Π2 = 0.313, gray wireframe with Π2 = 0 and a0 is the incoming wave amplitude.

Π1 = 1.26 · 10−3, Π2 = 0 Π1 = 1.26 · 10−4, Π2 = 0 Π1 = 1.26 · 10−4, Π2 = 0.313

Figure 3: |ξij |/a0 over kℓx ∈ (0, 10), modes along the x-axis is shown with j = 0 and i = 0, . . . , 7,
ℓx/ℓy = 1, θ0 = 0deg and a0 is the incoming wave amplitude.
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