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Highlights
• The study is based on the boundary integral equation free of waterline integrals;

• A least-square based high-order boundary element method is developed;

• The vector Green function for ship waves is derived and simplified.

1 Boundary-value problem
Consider a ship steadily translating in calm water of infinite depth along a straight path
at a consistent speed U . A Cartesian coordinate system Oxyz moving with the ship is
defined with the Oxy plane coinciding with the undisturbed free surface and Oz axis
pointing positively upward. Then, the velocity potential Φ in the flow field is

Φ(x, y, z) = U [−x+ ϕ(x, y, z)], (1)

where ϕ denotes the potential perturbed by the ship hull satisfying the Laplace equation
∇2ϕ = 0. The velocity potential ϕ is determined by the boundary conditions. On the
undisturbed free surface z = 0, it satisfies the linear Kelvin-Michell free surface condition

∂2ϕ

∂x2
+ κ

∂ϕ

∂z
= 0 at z = 0 with κ =

g

U2
, (2)

and the body boundary condition on the hull surface ΣH given by

∂ϕ

∂n
= nx on ΣH , (3)

where the normal vector n = (nx, ny, nz) is defined positive pointing inwards the domain.
By integrating the pressure over the body, the hydrodynamic force on the body is

F =

∫∫
ΣH

pn dS with p = ρU2

(
∂ϕ

∂x
− 1

2
|∇ϕ|2

)
. (4)

2 Boundary integral equations
The boundary-value problem will be solved via establishing a boundary integral equation.
By applying the Stokes theorem and free surface condition (2), the free surface integral
is converted to a waterline integral, and we can obtain the boundary integral equation
with a waterline integral, which is referred to as the “Neumann-Kelvin” model

2πϕ(x) =

∫∫
ΣH

[
nξG(x;ξ)− ϕ(ξ)

∂G(x;ξ)

∂n(ξ)

]
dS

− 1

κ

∮
Γ

[
∂ϕ(ξ)

∂ξ
G(x;ξ)− ϕ(ξ)

∂G(x;ξ)

∂ξ

]
nξdℓ√
n2
ξ + n2

η

,
(5)



where x ≡ (x, y, z) and ξ ≡ (ξ, η, ζ) denote the flow-field and singularity points, respec-
tively, ΣH is the mean wetted ship hull surface, Γ is the waterline of the ship hull, and
G(x;ξ) is the ship-waves Green function which will be considered in § 3.

However, it has been demonstrated that the Neumann-Kelvin model is ill-posed.
Moreover, the presence of the waterline integral brings considerable difficulties in the
numerical implementation. To deal with these notorious issues, Noblesse et al. (2013)
accounted for the component between the mean free surface and the actual free surface∫∫

ΣH
a

nξG(x;ξ)dS ≈
∫∫

ΣH

nξG(x;ξ)dS +
1

κ

∮
Γ

∂ϕ(ξ)

∂ξ
G(x;ξ)

nξdℓ√
n2
ξ + n2

η

, (6)

and introduced a vector Green function

G(x;ξ) = (0, Gξ
ζ ,−Gξ

η) satisfying ∇ξG(x;ξ) = ∇ξ ×G(x;ξ) + (∂ξ∇2
ξG, 0, 0), (7)

where subscript denotes differentiation, and superscript means integration. Then, a
boundary integral equation free of waterline integral is obtained (He et al. 2021)

4πϕ(x) =

∫∫
ΣH

{nξG(x;ξ) + [n×∇ξϕ(ξ)] ·G(x;ξ)} dS, (8)

which is referred to as the “Neumann-Michell model” (Noblesse et al. 2013). This paper
is then devoted to numerically solving the Neumann-Michell model in Eq. (8).

3 Vector ship-wave Green function
The boundary integral equation (8) involves the vector Green function defined by (7).
According to Liang & Chen (2019), the physically-realistic Green function for ship waves
free of unbounded wave amplitude and extremely steep waves is expressed as

G(x;ξ) = −1/r + 1/r′ +GF (x;ξ), with {r, r′} =
√
(x− ξ)2 + (y − η)2 + (z ± ζ)2, (9)

where GF is a harmonic function responsible for free surface disturbance written as

GF =
2

π
Re

∫ ∞

−∞

∫ ∞

0

ek(z+ζ)−i[α(x−ξ)+β(y−η)]

U2α2 − gk − 4iUναk2
dαdβ, with k =

√
α2 + β2. (10)

For free space Rankine source functions 1/r and 1/r′, the components associated with
the vector Green function given by Eq. (7) are written as[

(1/r)ξζ
(1/r)ξη

]
=

sign(ξ − x)

r(r + |ξ − x|)

[
ζ − z
η − y

]
, and

[
(1/r′)ξζ
(1/r′)ξη

]
=

sign(ξ − x)

r(r + |ξ − x|)

[
ζ + z
η − y

]
. (11)

For the components associated with the free surface term GF , they can be decomposed
into local-flow and wave components GF = GL + GW . Here we define nondimensional
coordinates (X, Y, Z) = κ(x−ξ, y−η, z+ζ). Then, the local-flow components are written
as  GL

∂ξ
ζG

L

∂ξ
ηG

L

 =
2κ

π

∫ π/2

−π/2

−sgn(X) Im[eZE1(Z)] cos θ
sgn(X) Re[eZE1(Z)] cos2 θ
−Re[eZE1(Z)] sin θ cos θ

 dθ (12)

where Z = [Z cos θ + sgn(X)Y sin θ − iX]. The wave components are written as GW

∂ξ
ζG

W

∂ξ
ηG

W

 = 4H(−X)Im

∫ ∞

−∞

 −κ
iκQ
−κq

 exp

[
Q2Z +

4ϵXQ6

Q2 + q2
− iQ(X + qY )

]
dq, (13)

with Q =
√
1 + q2.



4 Least-square high-order boundary element method
The inclusion of spatial derivatives within the boundary integral equation (8) necessitates
the utilisation of high-order patches. In the conventional high-order boundary element
method (HOBEM), the boundary integral equation is typically enforced at the nodal
points of the patch, resulting in a determined equation system wherein the number of
unknowns equals to the nodal points. However, challenges arise when the normal vector
exhibits discontinuities at the edges or corners of a ship hull. Moreover, the study on
removal of irregular frequencies (Liang et al. 2020) indicates that the equation system is
not necessarily determined. Consequently, an overdetermined system can be efficiently
solved using a least-square approach.

We aim to develop a least-square-based HOBEM by rendering the collocation points
located within the patch as shown in Fig. 1. In this study, the six-node triangular
quadratic patches are adopted, and then the velocity potential is interpolated as

ϕ =
6∑

j=1

ϕjNj(u, v), with 0 ≤ u+ v ≤ 1, (14)

where u and v are parametric coordinates, and Nj(u, v) are shape functions. The spatial
derivatives of the velocity potential can be obtained by differentiating shape functions.

The boundary integral equation is enforced on collocation points situated within each
patch, unlike the traditional HOBEM where collocation points coincide with the nodes.
In this method, three such points are allocated per patch at (u1, v1) = (2/15, 2/15),
(u2, v2) = (11/15, 2/15), and (u3, v3) = (2/15, 11/15) in the parametric coordinate sys-
tem, as illustrated in Fig. 1. Typically, the number of nodes within the quadratic bound-
ary element method ranges from 2 to 3 times the number of patches. This results in an
overdetermined equation system with more equations than unknowns. While computing
influence coefficients, there are three specific scenarios. (1) When the collocation point is
distant from the influence patch, direct allocation of Gaussian points is executed. (2) If
the collocation point lies near the patch but outside it, the patch is subdivided into four
subpatches. (3) When the collocation point locates within the patch, the patch is splitted
into three subpatches as in Fig. 1. The influence of each subpatch on the collocation point
is realised by the transformation of triangle polar coordinates.
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Figure 1: .Figure 1: Allocation of Gaussian points (•) on a triangular patch composed of six nodes
(•) when the collocation point (•) located within the patch.



5 Preliminary results
As an illustrative numerical example, we investigate the wave drag exerted on a submerged
ellipsoid moving steadily beneath a free surface. The ellipsoid has major and minor axes
of 2a = 2.3 m and 2b = 0.4 m respectively, resulting in a focal distance of c =

√
a2 − b2 =

1.132 m. The submergence ratio of the ellipsoid is d/c = 0.252. In Fig. 2, we present the
nondimensional wave drag, denoted as fx = −1000Fx/(πρgc

3), varying with the Froude
number F = U/

√
2gc. Comparison is made with the numerical solution by Chen et al.

(2001). The generally good agreement validates the reliability of our numerical method.
Additional results will be presented at the workshop, including further analyses on the
wave drag and wave patterns generated by a surface-piecing ship hull.
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Figure 2: Wave drag experienced by a submerged ellipsoid beneath a free surface varying
with the Froude number.
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