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1. Digital technique as an analysis tool 
Recently, the application of digital techniques in our lives is evident. Digital technology is 

already becoming common in most areas of life that can be felt with the skin, such as home 
appliances or autonomous vehicle operation. Furthermore, the application of digital techniques 
is spreading to the traditional fields of mechanics, and marine fluid dynamics is not an 
exception. The terms such as machine learning or digital twin are now popular in recent 
technical papers. 
In the very near future, digital 

techniques will become firmly 
established as one of methods for 
analyzing engineering problems. 
Until now, we have applied 
mathematical, experimental, and 
numerical analyses for various 
mechanical problems in engineering, 
but now it seems that there is a new 
option: digital technique (see Fig.1).  
For the researchers who prefer 
traditional techniques, digital techniques have too weak background in physical and theoretical 
aspects. This is obviously true, and understanding this limitation is very important when 
applying digital techniques. Nevertheless, this new technique can provide complementary 
capabilities to the three existing analysis techniques. Furthermore, it may provide solutions to 
engineering problems that are extremely difficult or require too much time to analyze if the 
existing techniques are applied. 
This abstract introduces three cases which demonstrate how digital techniques can be applied 
in the field of marine hydrodynamics. In these cases, it is shown that digital techniques can be 
applied both a narrow scope and in the overall scope of the engineering problems. 
 
2. Problem 1: Surrogate model of calm-water resistance for hull-form optimization  
Hull-form design is one of major tasks in ship hydrodynamics, and a lot of effort has been made 
to optimize the hull form. The hull-form optimization carried out in shipyards is mainly to 
minimize resistance in still water, and the digital technique that can be applied in this 
optimization process is to predict resistance through a surrogated model rather than calculating 
it through numerical computation or experiments.  
Such an example can be found in the works of Shuguang[1].  They introduced a hull-form 
optimization including total resistance and speed loss in actual wave conditions. The hull-form 
optimization process requires a very large number of resistance analyses, which requires an 
enormous amount of time and effort. Regression equations based on experimental data were 

Figure1: Analysis tools for marine hydrodynamic problems 



used in the past, and recently, CFD has been partially applied. However, Suguang et al. used 
CFD to secure the metadata of calm-water resistance for various hull-parameter changes in 
advance and then applied this to the optimization process.  
Fig. 2 shows an example of hull-form variations of KVLCC2 and its metadata based on CFD 
computation. In this case, the change of hull form, particularly the bow part, is controlled by 
five control points defined on the ship surface. The calm-water resistance Ct and geometric 
properties, e.g. ship length, buoyancy center, and wetted surface, are dependent on the change 
of hull form, i.e. movement of five control points. To replace the CFD computation for hull-
form optimization, a radial-basis-function(RBF) surrogated model is applied, which has the 
form of Eq.(1). 
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where 𝛼𝛼 and 𝛽𝛽 are the interpolation coefficients and 𝜙𝜙(𝑟𝑟) is the radial basis function. X means  
the design variables, i.e. the movement of five control points. In addition, the term 𝑝𝑝(𝑋𝑋) 
indicates any polynomial function. 𝛼𝛼 and 𝛽𝛽 are obtained by applying the design variables of 
the i-th training case chosen from the resistance metadata. The details can be found in [1]. 
Fig. 3 shows the leave-one-out cross-validation on training data for Ct when the RBF is 
𝜙𝜙(𝑟𝑟) = 𝑟𝑟2 log(𝑟𝑟), showing better agreement for larger number of training data. It is obvious 
that the surrogate model provides a good correspondence with CFD computation when the 
training number is enough. 

Figure 2: CFD metadata of calm-water 
resistance: KVLCC2, Fn=0.142 [1] 

 

Figure 3: Leave-one-out cross-validation on 
training data for calm-water resistance [1]

3. Problem 2: Artificial neural network scheme for sloshing load prediction 
Sloshing experiment for industrial projects is very time- and cost-consuming. If we can reduce 
the test cases or predict the loads without experiment, it will be extremely beneficial. Ahn and 
Kim[2] introduced the application of an artificial neural network(ANN) scheme for the 
prediction of sloshing impact pressure on the tank of LNG carriers. They utilized the database 
of Seoul National University, which was extracted from about 100 tank models. At each project, 
200~400 test cases with different filling and ocean wave conditions were considered. That is, 
the database has a lot of existing measurements for different tank shapes and excitation 
conditions. Ahn et al.[3] first organized many of these data based on data mining techniques, 
and used this to estimate sloshing ultimate load by applying the ANN technique. 



Fig. 4 shows the range of the tank shapes of their database, normalized with respect to the mid-
tank breadth of 138,000m3 LNG carrier. Fig. 5 shows the scatter diagram of pressure coefficient, 
measured on different regions of the tanks, for various wave conditions. Since the ship motion 
depends on the wave characteristics, the different wave spectra mean different excitation 
conditions. Using data mining schemes, we can find some important correlations between input 
parameters and output results, which provide keys to understand the physics involved in 
sloshing occurrence. Fig. 6 shows This figure compares the experimental-based and ANN-
based prediction results for the extreme load during 3 hours. The tank models are two actual 
LNG tanks of different LNG carriers. What is important to note in these results is whether the 
ANN-based prediction of the extreme load in the same sea state expected from the tanks 
mounted on two ships, the conventional model and the optimum model, matches the 
experimental results. Fig. 6 clearly shows the validity of the ANN predictions. 
 

         
(a) Tanks of LNG carrier                                  (b) LNG fuel tank 

Figure 4: Range of tank models in SNU’s database [2] 
 

 
Figure 5: Scatter diagram of pressure 

coefficient with respect to significant height 
and mean period of ocean wave spectrum [3] 

Figure 6: Comparison of extreme pressure 
between experiment(up) and ANN(down) 
prediction: two different tanks under low 

filling condition [2]
 
4. Problem 3: Machine learning for ship motion in waves 
Recently, ship motion analysis results using machine learning(ML) techniques have been 
introduced in many papers. However, what is important in this analysis is that the physical 
mechanism involved in the ship motion must be understood, and such physical mechanisms 
must be reflected in digital techniques. For example, the memory effect is important for the 
motion of a ship in waves, and how much time to apply to the training data in ML can be 
determined by considering theoretical values related to the memory effect such as the 
retardation function rather than simply determining it through a parametric study.  
Actual ship motion is dependent critically on ocean waves, but almost all published ML-based 
ship motion analysis treats ocean waves as a simple input signal. In this abstract, we introduce 
a more advanced method of ML analysis applied to spatiotemporal data as an example. Lee et 
al.[4] improved the accuracy of prediction by applying input containing both spatial and 
temporal data of ocean waves to ML.  



Fig. 7 shows the concept of the application of spatiotemporal data for ML application. The 
NxN sets of spatial data are compressed into smaller data set and applied eventually as a single 
vector after repeating the compression. The training of ship motion is based on a well-known 
LSTM  scheme. Fig. 8 shows an example of heave RAOs for different wave headings. In this 
figure, HD means the solution of strip theory and INN indicates the results of the machine 
learning scheme using spatiotemporal data. It should be mentioned that the motion signals are 
obtained using an impulse-response-function method and weakly-nonlinear method. Fig. 9 
shows an example of ship motion in oblique irregular seas, showing almost identical results 
with a hydrodynamic motion solver. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Convolutional neural network system for 
wave-field data [4] 

 

 

 

 

 

 

Figure 8: Heave RAOs for different 
wave directions: KVLCC2 [4] 

 
Figure 9: Ship motion in irregular sea: Beaufort scale 8, 60o heading, heave-roll-pitch motion (from 

top), 9x9 spatial data for waves [4] 
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