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1 Introduction

Boundary element methods (BEMs) are widely used in the field of marine hydrodynamics
for the analysis of wave-ship interaction. Even if a large variety of BEM solvers exists
(e.g. based on the free surface Green function method, on the Rankine-source Green
function approach or on boundary integral equation solvers), most approaches do not
consider the free surface discontinuity due to the presence of the body in the near-field
assembly of boundary integral operators (BIOs). In consequence, complex computational
grids, which need to be updated for nonlinear time domain simulations, are required.
In the context of this abstract, we present the 2D and linearized Galerkin-type coupled
BEM (cBEM) that solves for the mixed boundary value problem (BVP) containing the
discontinuous free surface and body surface, c.f. Fig. (1). The incorporation of the high-
order spectral (HOS) method, introduced by West et al. (1987) and Dommermuth & Yue
(1987), allows the monolithic coupling of wave and body dynamics. In the presented
application, small amplitude motions of a surface piercing body around its equilibrium
position are considered. High-order basis functions are used to approximate the solution
function space composed of the velocity potential ϕ and its normal derivative ∂ϕ/∂n, and
the geometry of the body. We discuss the verification of cBEM with an analytic reference
solution and demonstrate the validity of the solver for hydrodynamic problems with
experimental and numerical data.

2 Mathematical foundation

The considered mixed BVP was given by

∆ϕ(x) = 0 for x ∈ Ω (1.1)

gD(x) := ϕ(x, t) for x ∈ ΓW,D (1.2)

gN(x) :=
∂ϕ(x, t)

∂n
for x ∈ ΓB,N (1.3)

ϕ = 0,
∂ϕ

∂n
= 0 for |r| → ∞ , (1.4)



(a) Problem of interest and discretization.
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(b) Convergence of cBEM solution (bullets).

Figure 1: (a) Mixed BVP with surface discontinuities and (b) L2-error of cBEM result
against the analytic reference for the stationary, surface piercing body test case. The red
colored dashed line in (b) represents the slope equivalent to convergence order |O(E)| = 2.

with x = (x, z). The Laplace equation, Eq. (1.1), together with the Dirichlet problem,
Eq. (1.2), at the free surface and the Neumann problem, Eq. (1.3), at the body surface, was
written in terms of the Boundary Integral Equations (BIEs) in the Galerkin formulation∫

ψ(x)γext0 ϕ(x)dsx =

∫
ψ(x)

[ ∫
G(x, y)

∂ϕ(y)

∂n(y)
dsy,W −

∫
∂G(x, y)

∂n(y)
ϕ(y)dsy,W +∫

G(x, y)
∂ϕ(y)

∂n(y)
dsy,B −

∫
∂G(x, y)

∂n(y)
ϕ(y)dsy,B

]
dsx = 0

(2)

∫
ψ(x)γext1 ϕ(x)dsx =

∫
ψ(x)

[
n(x) · ∇(x)γext0 ϕ(x)

]
dsx = 0 (3)

with G(x, y) = − 1
2π

log(|x− y|), denoting the 2D Green function that represents the fun-
damental solution to the 2D Laplace equation, and the test-function ψ. The exterior trace
operator and its normal derivative, γext0 and γext1 , represent the limiting-to-the-boundary
process, which enables access to boundary values. In addition to the conditions proposed
in Eq. (1), the Method of Farfield Extension was used on the free surface domain to ap-
proximate periodicity in the lateral dimension. Combining the conventional BIE, Eq. (2),
and the normal derivative BIE, Eq. (3), and reordering, gave the direct formulation in
block matrix form (

A+ σ H
S −D + σ

)(
∂ϕ
∂n

ϕ

)
=

(
H A
−D S

)(
gD
gN

)
(4)

including the free term σ and the Single-layer (S), Double-layer (D), Adjoint (A), and
Hypersingular (H) BIOs defined by

S ∂ϕ

∂ny

=

∫
ψ(x)

∫
G
∂ϕ

∂ny

(y)dsydsx, Dϕ =

∫
ψ(x)

∫
∂G

∂ny

ϕ(y)dsydsx,

A ∂ϕ

∂ny

=

∫
ψ(x)

∫
∂G

∂nx

∂ϕ

∂ny

(y)dsydsx, Hϕ =

∫
ψ(x)

∫
∂2G

∂nx∂ny

ϕ(y)dsydsx,

(5)



with nx = n(x), ny = n(y) and G = G(x, y). The weighting of the BIEs, Eqs. (2) and
(3), with the test-function in the context of the Galerkin approach, made the integration
over both field- and test-function domain in the operator assembly necessary and the
(hyper)singular integral kernels were evaluated by means of the direct desingularization
approach introduced by Bonnet & Guiggiani (2003). The approximation of the solution
for the free surface was done using Z-Spline basis functions, see Sagredo (2003), that
allowed to replace the global basis functions of the HOS method by basis functions of
compact support. Consequently, the free surface discontinuity due to the surface pierc-
ing body could be treated explicitly by using new integration limits at the intersection
elements. In Fig. (1.a), the intersection elements are highlighted by the colored dashed
boxes. Besides the Z-Splines, basis function of interelement-type (support beyond one
element) and intraelement-type (support restricted to one element) B-Splines for the so-
lution approximation at the body surface were used. The linear wave equations were
integrated in time by using the fourth-order Runge-Kutta scheme.

3 Numerical results and discussion

The verification and validation of cBEM are summarized in the next paragraphs.

Verification cBEM We verified cBEM by considering the analytic solution of the
velocity potential in deep water provided by the 2D Linear Wave Theory

ϕlin(x, z; t) = −i η̂g
ω
ei(kx−ωt)ekz (6)

wherein the amplitude of the surface elevation is denoted by η̂, the gravitational accel-
eration by g, the wavenumber is k, related to the wave angular frequency ω through
the linear deep water dispersion relation. Based on Eq. (6), the Dirichlet and Neumann
reference data at the water surface and the body surface were derived and inserted in
the linear block matrix system Eq. (4). After solving it, the results were compared with
the numerical results of cBEM. Figure (1.b) shows the error after one solution evaluation
between the analytic reference and the cBEM results by means of the weighted L2-norm
for the surface piercing body with radius rB = 4m, centered in the free surface domain
of length LW = 32m. The convergence of the solution of ∂ϕ/∂n with increasing number
of water elements is of order |O(E)| = 1.47. The low error in the range of 10−3 verified
the self- and near-field assembly methods, as well as the procedure for evaluating the
coupling operators representing the influence of the water to the body boundary domain
and vice versa.

Application to hydrodynamics To validate cBEM, the radiation of waves due to
forced and oscillating, small amplitude heave motions of a surface piercing rectangular
cylinder was analyzed in terms of the added mass and the damping coefficient. In Fig. (2),
we compare the time domain results of cBEM after reaching a converged state with the
experimental and computational reference data given in Vugts (1968) over the investi-
gated oscillation frequency range. It is shown that the numerical results of cBEM are
well comparable to the reference data over the complete parameter range for both the
damping coefficient (blue) and the added mass (red).



Figure 2: Normalized added mass (red) and damping (blue) coefficient for the surface
piercing cylinder at different oscillation frequencies compared to results of Vugts (1968).

4 Conclusion

The solver cBEM was investigated with an analytic reference and literature data for
the case of a free surface piercing body in regular linear waves. The development of
desingularization methods for the coupling operators allowed the explicit consideration
of the discontinuous free surface and body surface. The use of a regular grid, which
does not have to be adapted to the body surface nor updated at each time step, gives a
time-saving alternative to classical BEM approaches. Future steps are the consideration of
intersections between the elements, the incorporation of the body dynamics, the extension
to nonlinear wave dynamics and the implementation in 3D.
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