
The 39th International Workshop on Water Waves and Floating Bodies, 14-17 April 2024, St Andrews, Scotland

The effect of variation of cross-sectional geometry on
the performance of a top-hinged wave energy

converter
Emma C. Edwardsa,b,c, Craig Whitlamd, Jack Hughesd, Martyn Hannb, Dick

K.-P. Yuec, Deborah Greavesb

a. Department of Engineering Science, University of Oxford
b. School of Engineering, Computing and Mathematics, University of Plymouth
b. Department of Mechanical Engineering, Massachusetts Institute of Technology

d. Marine Power Systems
Email: emma.edwards@eng.ox.ac.uk

1 Introduction

Geometry optimisation of a wave energy converter (WEC) is an excellent way to improve
performance of the WEC, since wave-structure interaction and the resulting forces depend
strongly on the geometry (Garcia-Teruel & Forehand 2021). In a recent study, a geometry
optimisation of a top-hinged WEC was performed, wherein the objective functions were
to (i) maximise power and (ii) minimise the power take-off (PTO) force, forming a multi-
objective optimisation. The latter objective function was introduced because the PTO
equipment can incur up to 50% of the total capital expenditure of the WEC (Bedard
et al. 2004). In this previous study, a uniform cross-sectional area for the top-hinged
WEC in the x − z plane was considered, as shown in figure 1a. Results were shown
to be consistent with relevant far-field theory of radiating waves. It was shown that by
introducing minimisation of the PTO force as an objective function, we could significantly
lower the PTO force without significantly reducing the extractable power.

In the present study, we look to generalise the geometry optimisation further by
relaxing the requirement of uniform cross-sectional area. The shape of the x − y plane
geometry is changed, and the performance of the WEC is studied (i.e., the extractable
power and PTO reaction force).

The methodology is outlined in Figure 1. TheWEC is a top-hingedWEC, whereby the
main WEC absorber is attached to a hinge point (O) via a rigid arm and thus restricted
to pitch motion only. In the previous study, we defined curves c1 and c2 to describe the
x−z plane curves defining the front and rear face of a top-hinged WEC with uniform cross
section. We performed a multi-objective optimisation to find the optimal geometries (that
is, the parametric expressions for the curves c1 and c2, as well as parameters r1 and r2,
which define the horizontal lengths, as shown in Figure 1a), which (i) maximise power,
and (ii) minimise PTO force. Extending this work, here we select five representative
cross-sectional areas from the previous optimisation’s Pareto Front of optimal solutions,
distinguished by colour in Figure 1c. In this analysis, we define curves c3 and c4 to
represent a change in the cross-sectional area along the width of the device. We look at
the effect of changing parameters f2 and g2, which are the second-order coefficients of the
polynomial basis functions defining c3 and c4, respectively, on the power and force.

2 Theory

In this study, we assume the wave amplitude to be small and the fluid to be ideal, allowing
linear potential flow theory to be used. We assume that the incident wave has a given



Figure 1: Flow chart of the procedure to define the geometry.

frequency ω and angle θ = 0, there is a constant water depth, kH = 5.34, and that the
PTO force can be modelled as linear damper, F5 = β55ξ̇5, where β55 is the PTO damping
coefficient and ξ5 is the body motion in pitch. Since the WEC is restricted to motion in
pitch, the equation of motion is

(I55 + A55)ξ̈5 + (β55 +B55)ξ̇5 + C55ξ5 = X5, (1)

where I55 is pitch moment of inertia, A55 is pitch added mass, B55 is pitch radiation
damping, C55 is pitch hydrostatic coefficient, and X5 is pitch excitation force.

Extractable power, averaged over one period, for this WEC is P = 1
2
β55ω

2|ξ5|2. To
maximise P, we set β55 = B55 and C55 − ω2 (I55 + A55) = 0, which result in optimal

power, P opt = |X5|2
8B55

, occurring when |ξopt5 |/A = |X5|/(4ωB55), and thus F opt
5 = |X5|

2
.

It is convenient to define capture width W to be extractable power over incident wave
power per unit crest length, PI = ρgA2Vg/2. Additionally, we nondimensionalise W with
wavenumber k.

It is well-known (Newman 1976), (Mei 1976) that radiation damping can be expressed
in terms of the far-field amplitude of the wave produced by the oscillating body in other-
wise still water, using Kochin functions Hj(ϑ). For power, in terms of far-field behavior,
we get an expression for optimal capture width:

kW opt = π
|H5(π)|2∫ 2π

0
|H5(ϑ)|2dϑ

. (2)

Furthermore, PTO force in terms of far-field behavior is:

|F5|opt =
ρωVg

k
|H5(π)|. (3)

We nondimensionalise force as ˜|F5| = F5k
3/(ρω2l), where l is the width of the WEC.



From these equations, we can see that to maximise power, we must maximise the wave
in the x = −∞ direction, when the WEC is forced to move in otherwise calm water,
and minimise waves in all other directions. To minimise PTO force, we want to minimise
the wave in the x = −∞ direction, when the WEC is forced to move in otherwise calm
water. Therefore, we have competing goals of minimising and maximising the wave in the
x = −∞ direction, and an unchallenged goal of minimising wave in all other directions.
We now explore how the shape of the WEC impacts these objectives.

3 Results and discussion

To examine the effect of the non-uniformity of the cross-sectional area on the power and
force, we change the coefficients f2 and g2. The coefficient f2 governs the shape of the
front face of the device: as shown in Figure 2a, a positive f2 corresponds to a more
convex front face, and a negative value of f2 corresponds to a more concave front face. g2
determines the shape of the rear face of the device: as shown in Figure 2d, a positive value
of g2 corresponds to a more concave rear face, and a negative value of g2 corresponds to
a more convex rear face.

Taking five shapes from the original optimisation with uniform cross sectional area
(i.e. f2 = g2 = 0), we change f2 and g2 and study the impacts. The five selected shapes
(shown in Figure 1c) represent the spread of power and force values on the Pareto Front
resulting from the original optimisation. The colours are kept consistent in Figure 2b,c,e
and f, which show how the power (b and e) and force (c and f) depend on f2 and g2.

From Figure 2b and c, we can see that power is increased with a more convex front face
(a more positive f2 value) for all five shapes, whereas force decreases with both convex
and concave front faces for all five shapes. Using far-field theory, we can infer that both
convex and concave front faces reduce the wave in the x = −∞ direction compared to a
flat front face (which consequently reduces the force, as shown in equation 3). However, a
more convex front face reduces waves in a wider directional spread (and thus reduces the
denominator in equation 2 and increases power). This suggests that a more convex front
face will both increase power and reduce PTO force - two desirable traits for a WEC.

From Figure 2e, we can see that the g2 value which maximises power is different for
the five shapes: for the highest-power highest-force (red) shape, the power is maximum
when g2 = 0. However, for the lower-power lower-force shapes, the power is maximised
when the rear face is more concave. These results are surprising: intuition from far field
theory suggests that a more convex rear face would be preferable as it would minimise
radiated waves over a larger directional spread.

From Figure 2f, we can see that for high-power high-force shapes (red, orange and
green), the force increases with both convex and concave rear faces, with the force in-
creasing considerably for a convex rear face. For the low-power low-force shapes (blue
and indigo) the force decreases when the rear face is more concave. These results are
also surprising — from far-field theory the force does not depend on waves radiated in
any direction other than x = −∞. One possible explanation for more convex rear faces
resulting in higher power (for the low-power, low-force shapes) and higher force is that
the WEC structure is becoming larger (i.e. the WEC volume has increased as the rear
face becomes more convex). However, more work is required to explain the variation in
the optimal values of g2 for different shapes to maximise power, and the increase in force
for concave rear faces (negative g2).



Figure 2: a) The profile, in the x−y plane, of different values of f2, b) Non-dimensionalised

power (kW ) vs. f2, c) Non-dimensionalised PTO force ( ˜|F5|) vs. f2, d) The profile, in
the x − y plane, of different values of g2, e) Non-dimensionalised power (kW ) vs. g2, f)

Non-dimensionalised PTO force ( ˜|F5|) vs. g2. In b, c, e, and f, the colour correspond to
the respective shape in Figure 1c.

4 Conclusion

This study looks at the effect of varying cross-sectional geometry of a top-hinged wave
energy converter on its power and reaction force. Far-field theory is used to explain
physical insights for the resulting effects of the changing front and rear face. This theory
proves reliable in explaining the results for the best front faces, but there are some
surprising results for the optimal rear faces. Further work will investigate the reasons
why convex rear faces do not generally appear more preferable.
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