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1 Introduction
The present abstract is concerned with highly nonlinear free surface deformation in a circular tank.
This simplified tank is the cross section of a horizontal cylinder which aims at carrying liquefied hy-
drogen (LH2) in aircraft (see Colville et al. (2023)). The problem is considered quasi two-dimensional,
hence it is greatly simplified compared to the actual configuration. Furthermore we focus on the mo-
tion of the interface when the tank has forced vertical oscillating motion only; the vertical direction
corresponding to the direction of the acceleration of gravity, this condition is known to yield Faraday
waves. In aircraft vertical accelerations can occur in turbulence, dynamic landing and taxiing. The
theoretical evidence of Faraday waves in a circular tank is first investigated in linear potential theory.
The experimental set-up and results are shown thereafter, and compared to derived eigenfrequencies.

2 Faraday waves in linearized potential theory
We consider the nonlinear boundary conditions along the interface between two fluids with arbitrary
density ratio, r = ρg/ρf where the indices f and g refer to the variables attached, the heavier fluid
(liquid) and the lighter fluid (gas) respectively. The two fluids are immiscible and their kinematics
are described in potential theory. At the instantaneous interface of the two fluids, we impose the
continuity of the pressure and the normal velocities.
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where ϕf and ϕg describes the fluid motion in the coordinate system attached to the tank and the
total vertical acceleration G(t) = g+γ cosΩt contains the gravity g and the oscillating forced vertical
acceleration of the tank.

The Faraday waves are sought after the linearization of the boundary value problem is performed.
In order to calculate the velocity potentials in both phases, we adopt the method of solution exposed
in McIver (1989) for a single phase and further developed for two phases in Scolan (2015). To this end,
a conformal mapping of the inner circular tank (radius D/2) is performed, x+iy = ih−e tanh
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h is the filling measured from the south pole and e is the length of the interface. The two lines β = βf

and β = βg are the images of the circular arcs wetted by the fluids f and g respectively. The interface
corresponds to β = 0. In the transformed plane, the linear solution in phase f reads
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where the function m is either sin or cos functions depending on the antisymmetric or symmetric
interface deformation respectively. Then the combination of the linearized kinematic and dynamic
boundary conditions at the interface gives

(1− r)G(t)D(τ ′, t) = −e

∫ ∞

0

D,t2(τ, t)K(τ, τ ′)dτ, τ ′ ∈ [0,∞[ (3)

where the operator K is detailed in Scolan (2015). By using the change of variable u = 2e−τ − 1,
the interval of integration is turned into [−1 : 1]. Then the integral equation (3) is discretized with
a Gauss-Legendre quadrature scheme, yielding an equivalent linear system

eKD,t2 + (1− r)G(t)D = 0 (4)



where K is a known square matrix and D is now a vector that depends on time only. The matrix
K can be written K = PHP−1 where H is a diagonal matrix containing the eigenvalues of K and
the columns of P are the eigenvectors of K. As a consequence equation (4) is written for a vector
E = P−1D

eHE,t2 + (1− r)G(t)E = 0 (5)

This is an uncoupled system of well known Mathieu equations for each component of the vector
E. The standard stability analysis is performed. Provided that no damping acts on the dynamical
system, and by noting ω2 the first symmetric eigenfrequency of the unforced system (γ = 0) it is well
known that the first limit of stability occurs when the ratio of frequencies is Ω = 2ω2. This result
is also shown in Kumar & Tuckerman (1994) but for another two fluid system (infinite horizontal
strips). Fig. 1a shows the variation of the first mode antisymmetric and symmetric nondimensional
eigenfrequency Dω2

1/2g and Dω2
2/2g with the filling ratio h/D. Fig. 1b shows the variation of

first mode symmetric nondimensional eigenfrequencies Dω2
2/2g in terms of the density ratio r. The

eigenfrequency where ρair/ρwater = 0.0012 is displayed in Fig. 1b, at small density ratio’s there
is little change in the eigenfrequency from ρair/ρwater=0. This eigenfrequency is compared with
experimental results in the following section with the two fluids water and air in the steady state
under forced excitation.

Figure 1: a) Non dimensional eigenfrequency first mode b) variation of first symmetric mode in
terms of density ratio

3 Experimental setup and illustrative results
The experimental campaign investigates Faraday waves at the fundamental symmetric mode. The
experimental setup, Fig. 2a, is similar to the one described in Colville et al. (2023). In this case
the frame is mounted vertically and the tank is excited vertically. This parametric study varies
the forcing amplitude, forcing frequency and fluid fill level. Spatial and temporal surface profiles
of the fluid free surface, in the steady state are obtained using a high-speed camera (HSC). Images
are acquired at 60 frames per second (fps) with a shutter speed of 1/12000s-1/15000s and spatial
resolution 1024x1024 pixels. Two high intensity lights are positioned at the edge of the tank, their
light is reflected and diffused off a white background screen directly behind the tank, this lighting
setup has been employed previously (see Gambioli et al. (2019)).

An image processing algorithm (IPA) extracts the free surface profile from the HSC images (Fig.
2b). The IPA identifies the moving region of interest for every frame. The Canny edge detection
method (see Canny (1986)) is utilised on the region of interest and the fluid free surface co-ordinates
are extracted. The free surface position is converted to world co-ordinates using the known diameter
of the tank and the detected circle diameter - in pixel co-ordinates. Three free surface points are
extracted, the left and right sidewalls (LS and RS) and the free surface centre (FSC). The steady
state sloshing amplitude (half of the peak to trough displacement) for each of the extracted free
surface points is then obtained for every test case.



Figure 2: a) Experimental setup b) Static free surface overlaid on original image

Fig. 3 shows the steady state sloshing amplitude (A0/D) against the frequency ratio (Ω/2ω2).
The fill level (h/D = 0.3) is presented in Fig. 3a for three different driving amplitude’s. This
shows that as the driving amplitude is increased, the sloshing amplitude increases. The maximum
sloshing amplitude occurs below the theoretical liquid natural frequency for all forced amplitudes
tested. This is characteristic of a soft spring nonlinear response. This nonlinearity increases as
the forced amplitude is increased, this is displayed on Fig. 3a as the maximum sloshing amplitude
occurs further from the theoretical eigenfrequency. Generally, symmetry is observed between the left
and right sidewall displacements. The largest free surface displacement occurs at the left and right
sidewall with the free surface centre showing consistently smaller displacements. At greater sloshing
amplitudes the difference between respective sidewalls and the free surface centre increases. Fig. 3b

Figure 3: a) 0.3 fill level fluid response with varying driving amplitude b) Fluid response for varying
fill level at constant driving amplitude

displays a comparison of different fill levels where the driving amplitude is kept constant (A = 2mm).
The 0.7 fill level shows the smallest sloshing amplitude at resonance and the greatest nonlinearity -
Ω/2ω2 shifted further below one. The 0.3 fill level exhibits the highest sloshing amplitude at resonance
and the closest resonant frequency to theory. The fill level clearly affects the degree of nonlinearity
in fluid response. There is greater nonlinearity at greater fill levels. Fig. 3b shows that the fill
level effects the difference in sloshing amplitude between the antinodes (symmetric sidewalls and the
FSC). The largest difference in magnitude occurs where h/D = 0.3 and the smallest difference in
magnitude occurs at the 0.7 fill level.

Fig. 4 shows the maximum sloshing amplitude case tested for a 0.3 fill level. Spatial profiles of the
free surface across a temporal cycle are displayed. Fig. 4a shows the increasing wave elevation where



ttrough < t < tpeak. Fig. 4b shows the subsequent decreasing wave elevation tpeak < t < ttrough. Fig.
4a shows the maximum wave steepness at t=0.27s, the wave velocity at this point is zero. Following
this, Fig. 4b shows the wave elevation descending from t=0.30s - t=0.50s. The overall mode shape
displays asymmetries between the wave elevation ascending and the wave elevation descending.

It was observed during the experimental campaign, where h/D = 0.3, that if the driving ampli-
tude is further increased, wave breaking occurs at the FSC crest and droplets are ejected from the
liquid column. It was also observed experimentally, for the 0.7 fill level, that wave breaking occurs
at the tank sidewalls at small driving amplitudes (≥ 3mm) near resonance. Therefore, the liquid
column maintains its structure (no breaking) for larger driving amplitudes at lower fill levels. This
leads to greater wave steepness values at lower fill levels (with no wave breaking).

Figure 4: a) Increasing wave elevation b) Decreasing wave elevation

4 Conclusion
This abstract has described two dimensional sloshing in a circular tank. Forced vertical oscillating
motion at principal parametric resonance has generated Faraday waves. Theoretical eigenfrequencies
have been calculated using linear potential flow. These have been compared to experimental results
of the steady state fluid. A soft spring nonlinear response is displayed, greater nonlinearities are
present for larger forcing amplitudes and higher fill level ratios.

References
Canny, J. (1986), ‘A computational approach to edge detection’, IEEE Transactions on pattern
analysis and machine intelligence (6), 679–698.

Colville, S. W., Ransley, E., Gambioli, F., Lee, Y. C. & Greaves, D. (2023), Fluid response of sloshing
in a horizontal cylinder due to horizontal excitation, in ‘ISOPE International Ocean and Polar
Engineering Conference’, ISOPE, pp. ISOPE–I.

Gambioli, F., Usach, R. A., Kirby, J., Wilson, T. & Behruzi, P. (2019), Experimental evaluation of
fuel sloshing effects on wing dynamics, in ‘Proceedings of the International Forum on Aeroelasticity
and Structural Dynamics, Savannah, GA, USA’, pp. 9–13.

Kumar, K. & Tuckerman, L. S. (1994), ‘Parametric instability of the interface between two fluids’,
Journal of Fluid Mechanics 279, 49–68.

McIver, P. (1989), ‘Sloshing frequencies for cylindrical and spherical containers filled to an arbitrary
depth’, Journal of Fluid Mechanics 201, 243–257.

Scolan, Y.-M. (2015), Some aspects of the eigenfrequency computation in a two-dimensional tank
filled with two non miscible fluids, in ‘30th International Workshop on Water Waves and Floating
Bodies, Bristol, UK’, pp. 189–192.


