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Highlights

Equations relating the pressure at a horizontal seabed, the free-surface profile and the surface-
pressure are derived for two-dimensional irrotational steady water waves with arbitrary pressure
at the free surface. Special cases include gravity, capillary, flexural and wind waves.

1 Introduction

The recovery of pure gravity (i.e., with constant surface-pressure) irrotational steady waves
from bottom pressure gauges as a long been proposed. These methods either solve the problem
exactly or under various assumptions; see [1, 2, 3, 4] and the references therein for details.
Recently, it was shown that an exact recovery is also possible in presence of constant vorticity [5].
However, to the authors knowledge, the recovery of capillary, flexural and wind waves (among
many other situations of physical interest) has never been attempted. These phenomena involve
different non-constant surface-pressures that can be very complicated (especially for capillary
and flexural waves). Here, we describe a general recovery method valid for any surface-pressure,
allowing to recover both the surface-profile and the surface-pressure.

2 Equations of motion

In the frame of reference moving with a traveling wave of permanent shape, the flow beneath
the wave is a steady two-dimensional irrotational motion of an inviscid fluid. Let (x, y) be a
Cartesian coordinate system moving with the wave, x being the horizontal coordinate and y the
upward vertical coordinate and let (u(x, y), v(x, y)) be the velocity field in this moving frame.
We denote by y = −d, y = η(x) and y = 0 the equations of the bottom, of the free surface and
of the mean water level, respectively. The latter equation expresses that 〈η〉 = 0 for a smooth
(2π/k)-periodic wave profile η, where 〈·〉 is the Eulerian average operator over one period, i.e.

〈 η 〉
def

=
k

2π

∫ π/k

−π/k
η(x) dx = 0. (1)

For solitary and other aperiodic waves, the same averaging operator applies taking the limit
k → 0+. The flow is governed by the balance between the restoring gravity force, the inertia of
the system and a surface pressure. With constant density ρ > 0 and acceleration due to gravity
g > 0, the kinematic and dynamic equations are, for x ∈ R and y ∈ [−d; η(x)],

ux + vy = 0, vx − uy = 0, u2 + v2 + 2 g y = −2 p, (2a, b, c)

where p(x, y) denotes the physical pressure divided by the density and B is a Bernoulli constant.
The flat bottom and the wavy free surface being impermeable, we have vb = 0 and vs = usηx

with ηx
def

= dη/dx and where subscripts ‘b’ and ‘s’ denote, respectively, restrictions at the bottom
and at the free surface, e.g. ub(x) = u(x,−d), vs(x) = v(x, η(x)). The pressure at the free



surface ps can be zero or a varying if, for instance, it models a prescribed surface (wind effect)
or capillary and flexural effects such that

ps = −
d

dx

{
τ ηx

(1 + η 2
x )

1/2
−

Dηxxx

(1 + η 2
x )

5/2
+

5Dηx η
2
xx

2 (1 + η 2
x )

7/2

}
, (3)

τ being a surface tension coefficient and D a rigidity parameter (both divided by the fluid
density). We take 〈ps〉 = 0 without loss of generality, since 〈ps〉 can be absorbed into the
definition of the atmospheric pressure. Thus, from the definition (1) of the mean level, one gets
[2, 5]

B =
〈
u 2
s + v 2

s

〉
=

〈
u 2
b

〉
, (4)

yielding the, here important, relation 〈 pb 〉 = g d. Finally, equations (2a-b) imply that the

complex velocity w
def

= u− iv is a holomorphic function of z
def

= x+ iy.

3 Equations for the free-surface and surface-pressure recoveries

The function (u − iv)2 being holomorphic, its real and imaginary parts satisfy the Cauchy–
Riemann relations

∂y
[
u2 − v2

]
− ∂x [2u v] = 0, ∂x

[
u2 − v2

]
+ ∂y [2u v] = 0. (5a, b)

Integrating over the water column and using the boundary conditions, these relations yield

pb − ps − g h =
d

dx

∫ η

−d
uv dy, (ps + g η)

d η

dx
=

d

dx

∫ η

−d

u2 − v2 +B

2
dy. (6a, b)

Taylor expansions around y = −d can be written

u2 − v2 = cos[(y + d)∂x] u
2
b = −2 cos[(y + d)∂x] (pb − gd), (7)

2uv = − sin[(y + d)∂x]u
2
b = 2 sin[(y + d)∂x] (pb − gd). (8)

Hence, with h
def

= d+ η, we have

∫ η

−d
uvdy = [1− cos(h∂x)] ∂

−1
x (pb − gd) , (9a)

∫ η

−d

u2 − v2 +B

2
dy = − sin(h∂x) ∂

−1
x (pb − gd), (9b)

so equations (6) yield

ps + gη = ∂x cos(h∂x) ∂
−1
x (pb − gd) = [cos(h∂x)− ηx sin(h∂x)] (pb − gd), (10)

(B − ps − gη)ηx = ∂x sin(h∂x) ∂
−1
x (pb − gd) = [sin(h∂x) + ηx cos(h∂x)] (pb − gd). (11)

After one integration, equation (11) becomes

Bη − 1
2
gη2 − ∂−1

x (psηx) = sin(h∂x) ∂
−1
x (pb − gd). (12)

With the special surface pressure (3) we have

∂−1
x (psηx) =

τ

(1 + η2x)
1/2

− τ +
Dηxηxxx − 3Dη2xx

(1 + η2x)
5/2

+
5Dη2xx

2 (1 + η2x)
7/2

+ constant, (13)

where the integration constant must be determined by the mean level condition (1).



When ps = 0 (pure gravity waves), η can be obtained from pb solving the ordinary differential
equation (11) [2] or, more easily, solving the algebraic equation (12) [1]. When ps 6= 0 is a
function of x and/or η, such as (3), in general (12) is a complicated highly-nonlinear high-order
integro-differential equation for η due to the term ∂ −1

x psηx (see relation (13) for an example
of practical interest). This is not a problem for recovering the free surface η from the bottom
pressure pb because the surface pressure ps can be eliminated between (10) and (11), yielding

B ηx =
{(

1− η 2
x

)
sin[h∂x] + 2 ηx cos[h∂x]

}
(pb − gd), (14)

or in complex form — introducing P̃(z)
def

= pb(z + id)− gd —

B ηx =
(
1− η 2

x

)
Im

{
P̃s

}
+ 2 ηxRe

{
P̃s

}
, (15)

that is a (nonlinear) first-order ordinary differential equation for η. Equation (15) being alge-
braically quadratic for ηx, it can be solved explicitly for ηx, thus one gets

Re
{
P̃s

}
− ηx Im

{
P̃s

}
= 1

2
B ± 1

2

∣∣∣B − 2 P̃s

∣∣∣ . (16)

Since the free surface is flat if the bottom pressure is constant (and since B > 0), the mi-
nus sign must be chosen. Moreover, the condition (4) rewritten in terms of P̃ yielding B =〈 ∣∣∣B − 2 P̃s

∣∣∣
〉
, the average of the right-hand side of (16) is zero, so is the left-hand side.

Equation (16) is a priori not suitable if η is (nearly) not differentiable (limiting waves). It
is thus more efficient to solve its antiderivative

2 Re
{
Q̃s

}
− K = ∂ −1

x

[
B −

∣∣∣B − 2 P̃s

∣∣∣
]
, (17)

where K is an integration constant and where Q̃(z)
def

= qb(z+ id) with qb(x)
def

= ∂ −1
x (pb(x)− gd)

choosing 〈qb〉
def

= 0, so ∂x Re
{
Q̃s

}
= Re

{
P̃s

}
− ηx Im

{
P̃s

}
and

〈
(1 + iηx)Q̃s

〉
= 0. The right-

hand side of (17) being the antideirative of a zero-average quantity, we conveniently choose〈
∂ −1
x

[
B −

∣∣∣B − 2P̃s

∣∣∣
]〉

def

= 0, hence K = 2
〈
Re

{
Q̃s

}〉
. Thus, a numerical resolution of (17)

does not require the computation of ηx, that is an interesting feature for steep waves.
The free-surface η being obtained after the resolution of (16) or (17), the surface-pressure

ps is obtained explicitly at once from (10)

ps = ∂xRe
{
Q̃s

}
− gη = Re

{
P̃s

}
− ηx Im

{
P̃s

}
− gη. (18)

Thus, as η, ps is known modulo the Bernoulli constant B that is the only quantity left to be
determined. In order to fully recover both the free-surface and the surface-pressure, knowing
only the bottom pressure is not sufficient so at least one extra information is needed. We
consider here two possibilities of practical interest.

A first possibility is when we have access to one independent extra measurement, for instance
the mean velocity at the bottom (or elsewhere), the mean pressure somewhere at a point above
the seabed, the phase speed, the wave height, etc. In that case, the Bernoulli constant B is
chosen such that the recovered wave matches this measurement.

If no extra measurements are available, the free-surface can nevertheless be fully recov-
ered with the knowledge (or reasonable guess) of the physical nature of the surface-pressure,
for instance given by (3). The missing parameter can then be obtained minimising the error〈
|psr − pst|

2
〉
between the recovered surface-pressure psr obtained from (18) and the theoretical

surface-pressure pst given, say, by (3).
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Figure 1: Recovery of a capillary-gravity wave with period L/d = 6π, Froude number square B/gd = 1.01568
and Bond number τ/gd2 = 1/3. (a): Bottom pressure treated as a “measurement” for the recovery procedure.
(b,c): Respectively, recovered surface pressure and profile (blue circles) versus the exact solution (red line).

4 Summary

We described a general method for recovery the surface-profile and the surface-pressure from
bottom-pressure measurements. An example of surface-profile and surface-pressure recoveries
is given in Figure 1; interested readers can find more details in [6]. The approach can be
generalised to flows with constant vorticity along the line of [5]. The approach can also be
further generalised to handle overturning waves, as described in [7].
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