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Further to the work by Liang et al (2023) on steady ship waves from the perspective of an earth-fixed observer,
we describe here time-harmonic unsteady ship waves observed at sea, i.e., at a fixed point, in addition to the usual
observation on the ship. The results obtained in the translating coordinate system fixed with the ship, summarized
in Chen & Noblesse (1997), are used to reveal different features in the earth-fixed coordinate system. Furthermore,
the heat map of time-harmonic ship waves is obtained by the analysis based on the time-frequency spectrograms.

1 Introduction
Same as steady ship waves, time-harmonic flows around a ship advancing in waves are usually described in the
coordinate system moving with the ship’s average speed. Within this moving reference system, detailed descriptions
of ship waves have been made in many previous studies. Following the decomposition of free-surface effects into wave
and local components given in Noblesse & Chen (1995), recent works by Noblesse (2000) and Chen (2004) revealed
that essential physical features such as different wave systems and their wavelengths, cusp angles, phase, and group
velocities, are directly related to wavenumber curves (also called dispersion curves) determined by the dispersion
relation on the mathematical Fourier plane. Insightful physical results have been achieved and applied in developing
numerical tools to predict ship seakeeping.

However, the description of time-harmonic ship waves in the earth-fixed coordinate system is missing although a
few studies exist on steady ship waves like that by Liang et al (2023). It is not as trivial as expected, to transform
results in the moving coordinate system to the fixed coordinate system. Much caution is needed to obtain consistently
the phase and group velocities which are closely associated with wave crestlines. In the present study, after having
summarized classical results in the moving coordinate system, important analyses of time-harmonic ship waves in
the earth-fixed coordinate system are presented with numerical illustrations. The results obtained in both coordinate
systems are believed to be useful in the prediction of ambient waves due to the passage of ships.

2 Mathematical formulations
We define a Cartesian coordinate system (O −XY Z) fixed on earth by choosing its (X,Y ) plane to coincide with
the undisturbed free surface and the Z−axis oriented positively upward, and a moving coordinate system (o− xyz)
in parallel with (O − XY Z) but to move at the same constant speed as ship along the positive x direction. The
relationship between these two coordinate systems is given by

x = X +X0 − U(T − T0), y = Y + Y0, z = Z (1)

in which (X0, Y0) are the coordinates of the origin o at the instant T0. The constants (X0, Y0, T0) are usually put to
be zero or X0 = −UT0 & Y0 = 0, for the sake of simplicity.

In the moving coordinate system translating at the speed Fr = U/
√
gL scaled with the acceleration due to gravity

g and ship length L, the time-harmonic ship waves at some distance from the ship represented by a point source of
unit density at the origin pulsating with a frequency ωe are usually expressed by

Φ(x, y, z, t) = ℜe
{
ϕ(x, y, z)e−iωt

}
(2)

with the scaled frequency ω = ωe
√
L/g and t = T

√
g/L. The wave component ϕ(x, y, z) is given in Noblesse & Chen

(1995) by a single integral

ϕ =
1

4πi

∫
D=0

ds [sgn(Dω) + sgn(xDα+yDβ)]
ekz

||∇D||e
−i(αx+βy) (3)

where the dispersion function D(α, β, ω, Fr) is defined in the Fourier plane (α, β) as the real part of the complex
dispersion function D(α, β, ω, Fr, ϵ) given as (eq. 32) in Chen (2023) including viscous effects :

D = (ω−Frα)
2 − k = lim

ϵ→0+
D(α, β, ω, Fr, ϵ) (4)

with k =
√
α2 + β2, and its derivatives

Dω = 2(ω−Frα) ; Dα = −2Fr(ω−Frα)− α/k and Dβ = −β/k (5)



and ||∇D|| =
√
D2
α +D2

β . The integral increment ds is the arc length along the wavenumber curves in the Fourier

plane (α, β) defined by the dispersion equation D = 0. There are several curves depending on the parameter τ = ωFr,
typically three distinct dispersion curves: an open one on the left (α < 0), another open on the right (α > 0) and
a closed one around the origin for τ < 1/4, the left open curve touching the closed one for τ = 1/4 and becoming
only one open curve for τ > 1/4 together with the open curve on the right (α > 0). Associated with these distinct
dispersion curves, the outer-V, inner-V and ring waves for τ < 1/4, and ring-fan and inner-V waves for τ > 1/4,
respectively, are nominated in Chen & Noblesse (1997), Noblesse (2000) and Chen (2004).

By using the polar coordinates both in the Fourier plane (α, β) = k(cos θ, sin θ) and on the free surface (x, y) =
h(cos γ, sin γ), the phase function in (3) is then written as

ψ = αx+ βy = kh cos(θ − γ) (6)

The stationary phase defined by ψ′ = α′x+ β′y = 0 yields the relation

xDβ − yDα = 0 = h||∇D|| sin(ϑ− γ) (7)

obtained by using Dαα
′+Dββ

′ = 0 along D = 0. In above (7), ϑ = arctan(Dβ/Dα) represents the angle between the
unit vector normal to the dispersion curve and the α-axis. The equation (7) shows that the vector (x, y) is parallel
to the vector (Dα, Dβ) at right angle to the dispersion curve at the point of stationary phase. Indeed, ϑ = γ if
sgn(Dω) = 1 or ϑ = π + γ if sgn(Dω) = −1 due to the fact that xDα + yDβ is just the dot product of vectors (x, y)
and (Dα, Dβ) so that sgn(xDα + yDβ) must be the same sign as sgn(Dω) for the integrand function in (3) to make
sense. The asymptotic expression of (3) is then given by

ϕ(x, y, z) ≈
2,3∑
s=1

1

i
√
2πh|ψ′′

s |
eksz

||∇Ds||
e−i(αsx+βsy)−sgn(ψ′′

s )iπ/4 (8)

in which ψ′′
s is the second derivative of the scaled phase function (ψ/h) at the stationary points (αs, βs) along the

two (for τ < 1/4) or three (for τ > 1/4) dispersion curves. The asymptotic expression (8) is valid for |ψ′′
s | > 0 in

which case the lines of constant phase, for example, ψ = αx+ βy = ∓n(2π) with integers n > 0, are drawn by

(x, y)n = ±2nπ(Dα, Dβ)/(αDα + βDβ) (9)

derived from (7) with (Dα, Dβ) defined by (5) at the stationary points (αs, βs). The sign ± in (9) should be consistent
with the sign of sgn[Dω(αDα + βDβ)]. The crestlines (9) associated with a series of constant phases are depicted on
the right of Figure 1 and well representive to wave patterns obtained by (8) depicted on the left of Figure 1.

The second derivative of phase function can be evaluated as

ψ′′/h = α′′ cos γ + β′′ sin γ = c
[
(α′)2 + (β′)2

]
sin(ϑ+ γ)/ sin 2ϑ (10)

where c = (2DαβDαDβ −DααD
2
β −DββD

2
α)/||∇D||3 is the curvature of dispersion curves at the point of stationary

phase. Thus ψ′′
s = 0 at the stationary point where the curvature c = 0 is often called the inflection point, and the

angle ϑ = ϑc of the normal vector is maximum. According to (7), time-harmonic ship waves should be contained
within the angles ±γc measured from the negative x−axis with γc = π − ϑc written by

γc = π − arctan(Dβ/Dα)|c=0 = arcsin(1/
√
6F 2

r kc) (11)

in which the wavenumber kc satisfies

F 4
r k

2
c − (3/2)F 2

r kc + sgn(Dω)4τFr

√
kc − 3τ2 = 0 (12)

derived from c = 0 = D. It is noted in Chen (2004) that (11) is valid for all wave systems except the cusp angle
of the ring-fan waves in the interval of τ ∈ (1/4,

√
2/27) which is equal to its complement to π. Several particular

values of γc for different τ are listed in Table 1 (page 376) in Chen (2004).

According to the definition (2) and the asymptotic expression (8), the phase velocity vp representing the change
rate of phase function is given by

vp = −(αs, βs)ω/k
2 = −(cos θ, sin θ)ω/k (13)

which is at the right angle to the crestlines defined by (9). The negative sign in (13) is consistent with the phase
definition (6) such that the direction of phase change rate is opposite to that of wavenumber vector (α, β)/k =



(cos θ, sin θ) The phase velocity (13) has its magnitude |vp| = ω/k. On the other side, the group velocity at which
wave energy propagates is defined by

vg = −(∂ω/∂α, ∂ω/∂β) = (Dα, Dβ)/Dω = −(Fr, 0)− sgn(Dω)(α, β)/(2k
3/2) (14)

which is in the radial direction from the origin in parallel with the normal vector defined by (Dα, Dβ)/||∇D|| of the
dispersion curves at the stationary point. It can be checked that the dot product

(x, y)n · vg = 2nπ(D2
α +D2

β)/|Dω(αDα + βDβ)| > 0 (15)

which shows that wave energy is propagating away from the disturbance in accordance with the radiation condition.
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Figure 1: Wave patterns (left) and crestlines (right) for τ = 0.5

Now we analyze above features of time-harmonic ship waves in the earth-fixed coordinate system. The time (t),
wavenumbers (k) and relative positions of wave systems (crestlines) are invariant. They keep the same as those in
the moving coordinate system, just like that a same picture taken at one instant centered at ship position is now
observed at another position of some distance behind the ship. However, many things change. Firstly, the expression
(2) of waves is now written by

Φ(X,Y, Z, t) = ℜe
{
ϕ(X,Y, Z)e−iΩt

}
(16)

in which the frequency Ω is given by
Ω = ω − Frα = ω − Frk cos θ (17)

obtained by introducing (1) in (8) and (2), and using the scaled speed, frequency and time. The dispersion equation
(4) becomes then

D = 0 = Ω2 − k (18)

Secondly, the phase velocity in the earth-fixed coordinate system is changed as

Vp = vp − (cos θ, sin θ)Fr(− cos θ) = −(cos θ, sin θ)Ω/k (19)

by considering the component of forward speed in the direction at right angle to wave crests. On the other side, the
group velocity is then

V g = vg + (Fr, 0) = −sgn(Dω)(cos θ, sin θ)/(2
√
k) (20)

From (18), we have Ω = sgn(Dω)
√
k so that

V g =
1

2
Vp (21)

The group velocity is just the half of phase velocity, in consistency with kinematic characteristics of free-surface
waves in deep water. Both group and phase velocities are oriented in the wave-propagation direction at right angle
to wave crests.

Thirdly, unlike the time-harmonic ship waves observed on the ship oscillating at a unique frequency ω, the ship
waves represented by Φ(X,Y, Z, t) and defined by (16) at a fixed point (X = X0, Y = Y0, Z = 0) at sea are composed
of a series of wave frequencies Ω defined by (17). The frequency Ω is again dependent on the time t since k cos θ
associated with x = X0 − Frt is different for a different time t with a fixed point (X0, Y0).
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Figure 2: Time series (left) of time-harmonic ship waves for τ = 0.5 at ω2X0 = 0 and ω2Y0 = 2, 6 and 10, and its time-frequency
spectrograms (right) for ω2Y0 = 6.

3 Discussion and conclusions
The time series (16) measured at a fixed point (X0, Y0) are depicted on the left of Figure 2 for X0 = 0 and ω2Y0 = 2, 6
and 10. The method based on time-frequency spectrograms developed in Liang et al (2023) is applied to analyze
time series of these unsteady short-crested waves. One of ”heat” maps for ω2Y0 = 6 is illustrated on the right
of Figure 2. Unlike steady ship waves whose time-frequency spectrograms present only one continuous band of
L-shaped boomerang with two wings (branches) including horizontal one (transverse waves) and an oblique one
(divergent waves), here we have two boomerangs. The one on the top-right part resembling that of steady ship waves
is the inner-V waves, with the highest spectrum at t ≈ 49 when the cusp is touched at ω2Y0 = 6. The one on the
lower part is associated with ring-fan waves: the horizontal branch at very low frequency corresponding to partial
ring waves and the oblique branch with increasing frequency linked to the fan waves. The two branches of ring-fan
waves join at t ≈ 11 when the cusp is touched at ω2Y0 = 6. More information like the slope of oblique branches, and
nodes where spectrum values are minimum along the oblique branches of divergent waves and fan waves, as well as
along the partial-ring waves, is also insightful to derive physical properties of unsteady ship waves.

Here, we have summarized some important features of time-harmonic ship waves observed both on the ship in the
moving coordinate system, and at sea in the earth-fixed coordinate system. Major differences are that waves observed
at sea have a series of frequencies depending on the measurement position and time (X0, Y0, t), and that the phase and
group velocities have different relationships than those evaluated on the ship. Although only the velocity potential
Φ(X,Y, Z, t) is considered, the extension to wave elevations η(X,Y, t) is direct and wave elevations have the same
characteristic features. The real ship waves depending on the ship hull which can be represented by a distribution
of sources need more elaborated solutions of seakeeping of a ship advancing in waves. These time-harmonic ship
waves are added to the usual steady ship waves plus incoming waves. Their analyses separately or/and together are
challenging but very interesting.
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