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1 Introduction

In recent years, there has been notable interest in investigating flexural gravity waves
caused by an oscillating and moving external pressure [6]. In the case of open water, it is
known, see [1] and [4], that the linear wave theory provides unbounded water elevation for
large times even for very small external pressure magnitude if the speed and the frequency
of the external pressure are related in a certain way. For an external load moving along a
thin floating elastic plate and oscillating such a relation is derived in this paper. It is also
known that the singularity of the fluid response to a moving and oscillating pressure can
be resolved with account for either viscous or nonlinear effects. We are concerned with
the large-time response of a viscoelastic plate near the critical conditions in the presence
of small damping. The critical conditions are related to the corresponding dispersion
relation for the flexural-gravity waves, which has multiple propagating wave modes and
double/triple roots [3]. This complex phenomena, where the group speed of some waves
is very small, is known as wave blocking [3].

This study focuses on exploring the large-time asymptotic solution of plate deflection
near the saddle point of the dispersion relation with account for viscous properties of the
plate material.

2 Mathematical formulation

In this section, we delve into the mathematical modeling of an infinitely extended thin
floating viscoelastic plate exposed to a time-harmonic external pressure moving at a con-
stant speed along the plate. The viscoelastic properties of the plate are described by the
Kelvin-Voigt model, see [5]. The problem is considered in a two dimensional Cartesian
coordinate system moving together with the external pressure, where x-axis is in the di-
rection of mean plate-covered surface and y-axis is acting vertically upward. It is assumed
that the external load is moving at a constant speed U and its magnitude is oscillating
at a frequency ω. The fluid is inviscid, incompressible and its flow is irrotational. Ad-
ditionally, the floating plate is considered to be thin, homogeneous and isotropic. The
water is of finite depth h, and the plate deflection is described by a function ζ(x, t).
The plate deflection and the flow under plate are described within the linear theory of
hydroelasticity. In the flow domain, the velocity potential Φ(x, y, t) satisfies the Laplace
equation
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The kinematic boundary condition on the plate/fluid interface yields
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The equation of floating viscoelastic plate on y = ζ in the moving coordinates reads
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where the Bernoulli equation was used, the derivatives of velocity potential are evaluated
at the current position of the plate surface, y = ζ(x, t), p(x) is the magnitude and ω is
the frequency of the external pressure, E is the Young’s modulus, I is the moment of
inertia, τ is the damping coefficient, ρp is the plate density and d is the plate thickness.

It is assumed that the external pressure distribution is switched on impulsively at
t = 0 with water being undisturbed at t ≤ 0, so that

ζ = ζt = 0, and Φ = Φt = 0. (5)

3 Dispersion relation and wave blocking

Under the assumption of a plane wave solution of the form ζ(x, t) = ℜ{ζ0ei(kx+ωt)} with
k being the wavenumber associated with the frequency ω of external load, the linearised
velocity potential is

Φ(x, y, t) = a1
cosh k(h+ y)

cosh kh
ei(kx+ωt), (6)

where a1 = (iΨ/Ω)ζ0 − (Dk4τ)ζ0 with Ψ = (Dk4 −mΩ2 + g) and Ω = ω + kU . In Eq.
(6), the frequency ω and wavenumber k are related through the dispersion relation

(1 + γk tanh kh) Ω2 − i(Dk5 tanh kh)τΩ− (Dk4 + 1)gk tanh kh = 0, (7)

with D = EI/ρg and γ = ρpd/ρg. This is a complex dispersion relation due to the
presence of damping constant τ . As a special case with τ = 0 and γ = 0, Eq. (7) reduces
to the plane flexural gravity wave dispersion relation with current [2].

Figure 1 demonstrates the dispersion curves for τ = 0 as defined by Eq. (7) for differ-
ent values of speed U . A noticeable trend emerges for wavenumbers k < 0, showing an
increase in frequency regardless of uniform current U . However, an intriguing observation
arises for the case of U = 3.5 m/s, where a portion of the dispersion curve with k > 0
becomes parallel to the horizontal axis. This implies that for U > 3.5 m/s the equation
(7) considered in terms of k has several roots, two or three, for the same frequency ω.
The dispersion curve for U = 4.5 m/s, for example, shows three roots, R1, R2 and R3 for
ω = 0.4 1/s, with a minimum and maximum between them. At the points, where the
slope of dispersion curve for a certain value of the load speed U becomes zero, dω/dk = 0,
the group velocity of the corresponding wave is zero and, therefore, the energy does not
propagate from the moving load. The points on dispersion curves with dω/dk = 0 are
called blocking points. For small positive τ , the complex roots of (7) can be close to
each other in the way as the roots R1, R2 and R3 shown in Fig. 1 merge for the speed U
reducing down to 3.5 m/s.
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Figure 1: Dispersion curves for different values of speed U with EI = 5 × 108 N m−2,
d = 0.05 m and h = 10 m.

4 Large time response of plate deflection near the

saddle point

In order to investigate the linear large time response of a floating viscoelastic plate in
a vicinity of saddle point where three positive roots of Eq. (7) merge, we assume a
small plate deflection with scale ηsc and characteristic length scale Lc = (D/ρg)1/4. The
hydrodynamic and structural parameters and variables are made non-dimensional using
ηsc and Lc,

x = Lcx̄, y = Lcȳ, t = t̄/ω, η = ηscη̄, Φ = ωηscLcΦ̄, p = pscp̄,

U = LcωŪ, g = ω2ηscḡ, and τ = ωτ̄ ,

where ηsc = psc/(ρω
2Lc). The dimensionless variables are denoted by the bar, which is

dropped below. It is worth mentioning that the nonlinear terms in the dimensionless
form of Eqs. (3) and (4) can be approximately neglected when ε = ηsc/Lc ≪ 1. Next, by
using the Fourier transformation, the transformed velocity potential of the linear problem
is obtained as
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1

2π

∫∞
−∞ p(x)e−ikxdx. It can be easily checked that 1 + f− = 0 and 1 + f+ = 0

represent the positive and negative branches of the dispersion relation (7). According to
the discussion made in Section 3, it is assumed that 1 + f+(k1) ≈ 0 and 1 + f−(k0) ≈ 0
with k0 (saddle point) and k1(< 0) are the roots of multiplicity three and one respectively.
The integral (8) can be decomposed as

Φ(x, y, t) = I+ + I−, (9)
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the integrals I± are not singular for τ > 0. Next, in order to determine the large-
time asymptotic of I−, we consider 1 + f−(k) = G1(k)− iτG2(k) and the wavenumber k0
being slightly perturbed, k0 = kR

0 + ikI
0, for τ > 0. After expanding G1(k) about k = kR
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Using contour integration, it can be shown that the integral on the right hand side tends
to zero as |x/t1/3| → ∞, see [1] for open water case. Correspondingly, the asymptotic
behavior of the plate deflection is obtained as
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and I be the integral on the right hand side of I−. Therefore, the deflection of the
floating viscoelastic plate depends on time t and grows like t2/3 in the far-field (x/t fixed
and t → ∞) for τt = O(1). For t → ∞ and τt → 0, the plate response is independent
of plate damping for large times, see [1]. For t → ∞ and τt → ∞, no wave propagation
occurs in the far-field.
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