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Abstract
We investigated wave interaction with an annular metamaterial cylinder, which is composed
of a series of curved plates extending through the depth. Fluid can flow tangentially between
the curved plates. Two physical findings are reported here. First, the free surface pattern
outside the metamaterial cylinder is remarkably symmetric about the axis of incidence of
plane waves. Second, the field enclosed by the annular cylinder is also symmetrical, never-
theless, the plane of symmetry is deflected from the incident plane waves, and the deflection
angle is determined by the angle difference between the two ends of any specified plate.

Mathematical model
In this model, an annular metamaterial cylinder subjected to unidirectional regular waves
in water of finite depth h is considered (see Fig. 1). The annular cylinder with its inner and
outer radii denoted as Ri and R, respectively, is composed of a periodic array of infinitely–
thin vertical curved plates. A global Cartesian coordinate system Oxyz is chosen with the
mean free–surface coinciding with the (x, y)–plane, Oz placed at the axis of the cylinder
pointing vertically upwards, and Ox coinciding with the incident wave direction. Hence the
fluid bottom is at z = −h. Moreover, a cylindrical coordinate system, Orθz, is chosen for the
purpose of convenience of mathematical expression. Fluid is allowed to flow in gaps between
adjacent plates and waves are supported by the free surface. The effect of these plates of the
annular cylinder allows waves to propagate along the curved channels between the plates.

Figure 1: Schematic of an annular metamaterial cylinder consisting of curved plates (left). s
denotes the length of the plate starting from (r, θ) = (Ri, θ

′) to (r, θ) = (r, θ′ + µ(r)), where
µ(r) represents the rotation angle of the plate at r. β(r) denotes the angle of the tangent on
the plate relative to the radial direction. A differential element along the channel (right).

We assume that all amplitudes are small enough that linear theory applies and we make
the usual assumptions that the fluid is inviscid, incompressible and its motion is irrota-
tional. We denote the fluid velocity potential by Φ(x, y, z, t). It is further assumed that



all motion is time–harmonic with angular frequency ω. Thus, we can write Φ(x, y, z, t) =
Re{ϕ(x, y, z)e−iωt}, where Re denotes the real part and ϕ is the spatial velocity potential
which is independent of time, i.e., t. i is the imaginary unit.

The fluid domain can be divided into an annular domain, which fills the annular meta-
material cylinder, and an exterior domain, representing the fluid domain outside the meta-
material cylinder extending towards infinity horizontally, and an inner region. The complex
velocity potential ϕ is subjected to the following boundary value problem [1]

∇2ϕ = 0 in the water (1)

ϕz − ω2ϕ/g = 0 on z = 0 (2)

ϕz = 0 on z = −h (3)
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(ϕ− ϕI) = 0 when r → ∞ (4)

where k is the wavenumber in finite water depth satisfying the gravity wave dispersion
relation ω2 = gk tanh(kh), g denotes the acceleration due to gravity, and ϕI represents the
velocity potential of incident waves. Within the fluid in the annular cylinder, Eq. (1) also
holds although it is confined to narrow disconnected domains bounded by thin plates aligned
with the radial direction of the Orθz coordinate.

Figure 1b shows a differential element along the channel. The fluid is assumed to be
imcompressable, hence we have
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which further gives
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where Us and Uz denote the horizontal and vertical fluid velocities, respectively, and

r(s) = Ri +

∫ s

0

cos β′(s′)ds′,
∂r

∂s
= cos β′(s), (7)

where β′(s) = β(r). We can obtain the reduced Laplace’s equation by using Us = ∂ϕ
∂s
,

Uz =
∂ϕ
∂z
, and Eq. (7) to Eq. (6)
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∂s
+ k2ϕ = 0, (8)

which governs the fluid motion at the annular region occupied by the metamaterials.
The spatial velocity potential in the exterior domain, r ∈ [R,∞), can be expressed as

ϕext = ϕI + Z0(z)
∞∑

m=−∞

AmHm(kr)e
imθ, (9)



where the second term denotes the components contributed by the waves scattered from the
cylinder. Am are the unknown coefficients to be determined; Hm denote the Hankel functions
of the first kind of order m; Z0(z) = cosh[k(z + h)]/cosh(kh)

The velocity potential at the interior domain, r ∈ [0, Ri], can be written as

ϕint(r, θ, z) = Z0(z)
∞∑

m=−∞

BmJm(kr)e
imθ, (10)

where Bm are the unknown coefficients to be determined.
General solutions of the reduced Laplace’s equation, i.e., Eq. (8), at the annular domain

(r ∈ [Ri, R]) satisfying free surface and bed boundary conditions may be expressed as

ϕann(s, θ
′, z) = Z0(z)

[
C ′(θ′)F ′(1) (s) +D′(θ′)F ′(2) (s)

]
, (11)

in which F ′(1)(s) and F ′(2)(s) are two (linearly independent) solutions of the reduced Laplace’s
equation, and they are dependent on the shape of the curved plates.

After mapping θ′ and s into (r, θ) and r, respectively, Eq. (11) may be rewritten as

ϕann(r, θ, z) = Z0(z)
[
C(r, θ)F (1) (r) +D(r, θ)F (2) (r)

]
, (12)

in which F (1)(r) and F (2)(r) are two independent solutions of the reduced Laplace’s equation
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which is obtained after inserting Eq. (7) into Eq. (8).
The functions C(r, θ) and D(r, θ) can be expanded as
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where Cm and Dm are the unknown coefficients to be determined; µ(r) denotes the angular
position of a point (i.e., (r, µ)) on the channel, which merges at (Ri, 0) on the inner edge of
the annular region (see Fig. 1), and it can be expressed as

µ(r) =

∫ r
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tan β

r
dr. (15)

The final expression of the velocity potential at the annular region can be written as

ϕann = Z0(z)
∞∑

m=−∞

[
CmF

(1) (r) +DmF
(2) (r)

]
eim[θ−µ(r)]. (16)

The unknown coefficients Am, Bm, Cm, and Dm can be determined by matching the
continuity of the pressure and flux across r = Ri and R. The symmetry of the water surface
in the exterior and interior domains is theoretically proved. For the sake of limited space,
detailed equations are not presented here.

Results
We take the following three cases (see Table 1 and Fig. 2) as an example to demonstrate

the interaction of waves with an annular metamaterial cylinder consisting of curved plates.
In different cases, the shape of the curved plates is governed by different types of functions.



Table 1: Definition of the parameters/functions associated with the three cases

Case No. cos β µ(r) F (1)(r) F (2)(r)

1 a1 tan β ln r
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)
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)
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)
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Figure 2: Shapes of the curved plate for the three
examined cases with R/h = 1.0, Ri/R = 0.5, and
µ(R) = π/4.

Figure 3 illustrates the instanta-
neous wave motion for these three
cases. It is observed that the free sur-
face pattern outside the metamate-
rial cylinder is remarkably symmetric
about the axis of incidence of plane
waves. Moreover, the field enclosed
by the annular cylinder is also sym-
metrical, nevertheless, the plane of
symmetry is deflected from the inci-
dent plane waves, and the deflection
angle is π/4, i.e., the angle difference
between the two ends of any specified
plate.

−3 −2 −1 0 1 2 3
x/h

−3

−2

−1

0

1

2

3

y/h

(a)

−3 −2 −1 0 1 2 3
x/h

−3

−2

−1

0

1

2

3
(b)

−3 −2 −1 0 1 2 3
x/h

−3

−2

−1

0

1

2

3
(c) Re[η]/A

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

Figure 3: Instantaneous free surface at t = 0 for R/h = 1.0, Ri/R = 0.5, µ(R) = π/4, and
kh = π: (a) Case 1 (a1 = 0.6617); (b) Case 2 (a2/h = 0.4689); (c) Case 3 (a3

√
h = 0.7877).
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