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1 Introduction

The type of waves generated by a ship in steady motion over a flat bottom varies with the depth Froude
number Fr = U/

√
gh (where g is the acceleration of gravity and h is the water depth). In the sub-critical

condition (Fr < 1), a wake wave and a depression along the ship are formed. In the critical (Fr = 1) and
supercritical (Fr > 1) conditions, upstream nonlinear solitons are generated at the bow. Boussinesq equations
were adopted by Wu & Wu (1982) to simulate a two-dimensional pressure patch moving on the free surface at a
near-critical speed (Fr ∼ 1). It was found that upstream solitons are generated periodically. Based on a series
of experiments in a channel with restricted width, Ertekin et al. (1984) found the crestline of upstream solitons
is straight and solitons begin to break at Fr = 1.2. Ertekin et al. (1986) used Green-Naghdi equations to model
the propagation of solitions generated by a three-dimensional disturbance. It was found that periodic generation
of solitons induces periodic oscillation of the wave drag. Based on a modified generalized Boussinesq equation,
Li & Sclavounos (2002) investigated three-dimensional solitons generated by a ship traveling in horizontally
unbounded water. Solitons which propagate in an unbounded domain have a parabolic crestline and do not
break at Fr = 1.2. Shi et al. (2018) used a fully nonlinear Boussinesq model combined with a viscosity
dissipation scheme and a shock-capturing dissipation scheme, and investigated the transition from breaking
solitons to a pure bore. Based on the forced Korteweg-de Vries equation, Wu (1987) explained the mechanism
of the formation of upstream solitons and found that their generation can be attributed to a well-balanced
interplay between nonlinearity and dispersion in the wave. By comparing the waves induced by a high pressure
system and a low pressure system, Grue (2022) illustrated the dispersive effect of the upstream generation of
three-dimensional solitons at Fr = 1.

In near-critical conditions (Fr ∼ 1), ship-generated upstream waves are nonlinear phenomena which cannot
be captured by a linear model and have been widely simulated by nonlinear models based on Boussinesq or
Korteweg-de Vries equations, e.g. Li & Sclavounos (2002) and Wu (1987). In this paper, we use a high-
order spectral (HOS) method to model the generation and propagation of upstream waves. A moving pressure
distribution is adopted to model the traveling ship; however, in contrast to most previous work where a static
pressure models the ship, such as Shi et al. (2018), we use a dynamic correction strategy to simulate a travelling
ship. The upstream waves in test cases with various Fr around 1 and different water depths h are studied. To
validate our numerical results, experimental records in Ertekin et al. (1984) are provided for comparison.

2 High-order spectral model

The high-order spectral model, which was initially proposed by Dommermuth & Yue (1987) and West et al.
(1987), is based on the potential flow formalism. The fluid is assumed to be homogeneous, inviscid, incompress-
ible, and the fluid motion is irrotational. The fluid domain is three-dimensional. x and y are the two horizontal
axes, and z is the vertical axis pointing upwards. The flow is described by a velocity potential ϕ(x, y, z), which
satisfies the Laplace equation:

△ϕ = 0. (1)

The surface potential is described by ϕS(x, y, z, t) = ϕ(x, y, η(x, y, t), t) where η is the free surface elevation,
then the nonlinear free-surface boundary conditions are

ηt +∇ϕS · ∇η − ϕz(1 +∇η · ∇η) = 0, at z = η, (2)

ϕS
t + gη +

1

2
∇ϕS · ∇ϕS − 1

2
ϕ2
z(1 +∇η · ∇η) = −p

ρ
, at z = η, (3)
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where ∇1 = ( ∂
∂x ,

∂
∂y ), ρ, g and p are the water density, gravitational acceleration and ship pressure distribution,

respectively. A flat bottom is assumed and the water depth is h. The bottom boundary condition reads

ϕz(x, y, z) = 0, at z = −h. (4)

Periodic boundary conditions are used in the horizontal plane. The potential is expressed by a truncated
power series, i.e. ϕ =

∑M
m=1 ϕ

(m). To satisfy the Laplace equation and the boundary conditions in the fluid
domain, ϕ(m) is written as

ϕ(m) =
∑
p

∑
q

A(m)
pq (t)

cosh(kpq(z + h))

cosh(kpqh)
eikxpx+ikyqy, (5)

where kxp = p 2π
Lx

, kyq = q 2π
Ly

and kpq = |(kxp, kyq)|. Lx and Ly are the lengths of the horizontal computational

domain. The modal amplitudes A
(m)
pq (t) can be solved by a Fast Fourier Transform. Then, the vertical velocity

on the free surface, ϕz(x, y, η), is computed from the z-derivative of Eqn. (5), and ϕ and η can be time-stepped
based on Eqns. (2) and (3).

A 4th-order Runge-Kutta method is adopted for time stepping. The sawtooth instabilities in HOS are
controlled by a second-order Savitzky-Golay filter in the physical space and a low-pass filter in the Fourier
space. According to Xiao (2013), the low-pass filter Λ has the form of a exponential function,

Λ(kx, ky|kxc, kyc) = exp

{√
( kx

kxc
)2 + (

ky

kyc
)2

n
}
, (6)

where n = 30, the wavenumber vector of each component is k = (kx, ky). kxc and kyc are the cut-off wavenumber
in the x and y directions, respectively. Following the half -rule (West et al., 1987), kxc = kxmax/2 and
kyc = kymax/2 where kxmax and kymax are the maximum wavenumbers of the Fourier space in the directions of
x and y, respectively.

We apply a dynamic correction to model the ship through the applied surface pressure p in Eqn. (3). The
dynamic correction strategy was initially proposed by Lindberg et al. (2013). The desired hull shape is described
by ηs(x, y, t), and the static pressure of the ship is defined as

ps(x, y, t) = −ρgηs(x, y, t) = ρgTf(x, t)q(y, t), (7)

where

f(x, t) =

{
cos2[

π(|x−x∗(t)|− 1
2αL)

(1−α)L ] 1
2αL ≤ |x− x∗(t)| ≤ 1

2L

1 |x− x∗(t)| ≤ 1
2αL

, (8)

q(y, t) =

{
cos2[

π(|y−y∗(t)|− 1
2βB)

(1−β)B ] 1
2βB ≤ |y − y∗(t)| ≤ 1

2B

1 |y − y∗(t)| ≤ 1
2βB

. (9)

The coordinates of the center of the water plane are (x∗, y∗), and they are a function of the time t. The
length, width and draft of the ship are denoted by L, B and T , respectively. α and β are coefficients which
control the shape of the wetted hull surface in the x and y directions, respectively. Note that ηs and ps are zero
outside the ship region defined by −L/2 ≤ (x− x∗) ≤ L/2 and −B/2 ≤ (y − y∗) ≤ B/2.

The problem is initialized with η = ηs and p = ps. At subsequent time steps, we apply a dynamic correction
about the ship pressure given by

p = −ρgηs + ρg(η − ηs)−
ρ

2

[
∇ϕS · ∇ϕS − ϕ2

z(1 +∇η · ∇η)
]
+ ρU(t)

∂ϕS

∂x
(10)

= −2ρgηs + ρgη − ρ

2

[
∇ϕS · ∇ϕS − ϕ2

z(1 +∇η · ∇η)
]
+ ρU(t)

∂ϕS

∂x
. (11)

The first term in Eqn. (10) is the static pressure of the hull and the rest of the terms are the dynamic correc-
tion which forces the surface potential towards the desired steady-state convective result at speed U . In the
computation, the ship pressure p expressed by Eqn. (11) is applied in the free-surface boundary condition, i.e.
Eqn. (3).

3 Results and discussion

In this paper, some of the test cases in the experiments conducted by Ertekin et al. (1984) are chosen for the
numerical simulation. In the experiment, a model of a Series 60 with block coefficient CB = 0.8 travels along
the centerline of the channel. The width of the channel is W = 1.22 m. The length, width and draft of the ship
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Figure 1: The surface elevation η on the centerline of the channel at t = 22.73 s in the test case with Fr=1.0.
The water depth is h = 0.125 m. xs is the initial position of the center of water plane in the x-direction.
The numerical results are computed by HOS (M = 3). The region of ship bottom is in the range of 24.91 ≤
(x− xs) ≤ 25.47 m. The nonlinear upstream waves are in the range of 26.49 ≤ (x− xs) ≤ 32.02 m.
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Figure 2: Wave records from the gauge placed along the centerline of the channel. The blue solid line denotes
the numerical results obtained using HOS (M = 3). The black dashed line denotes the experimental records.
(a) Fr=0.8, (b) Fr=1.0, (c) Fr=1.1.

model are L = 1.524 m, B = 0.234 m and T = 0.075 m, respectively. The model ship starts impulsively. Various
Froude numbers Fr and different water depths h are chosen in the test cases. In the numerical simulation, the
nonlinear order of the HOS model is set as M = 3. The length and width of the computational domain are
Lx = 122.88 m and Ly = 1.22 m, respectively. The number of nodes in the direction of Lx and Ly are Nx = 8192
and Ny = 128, respectively.

Firstly, we study three test cases in which the water depth is h = 0.125 m. Different Froude numbers are
adopted, i.e. Fr=0.8, 1.0 and 1.1. Figure 1 shows the surface elevation on the centerline of the channel at
t = 22.73 s in the test case with Fr=1.0. xs is the initial position of the center of water plane in the x-direction.
The region of ship bottom is at 24.91 ≤ (x − xs) ≤ 25.47 m, where the surface elevation is nearly a straight
line. The absolute value of the surface elevation in the region of ship bottom stays around 0.075 m, which
corresponds to the value of ship draft T . The correlation between the surface elevation in the ship region and
the ship form is attributed to the dynamic correction of ship pressure. The nonlinear upstream waves are shown
in the range of 26.49 ≤ (x − xs) ≤ 32.02 m. The first wave at around (x − xs) = 31.02 m is the main wave
with a peak of 0.068 m. The amplitude of the four small waves propagating behind the main wave shows a
decreasing trend. Furthermore, the mean level of the upstream waves is above zero.

To measure the formation of upstream waves, a gauge was placed along the centerline of the channel in the
experiment. Correspondingly, in the numerical simulation, a numerical wave gauge is set at the same position
as the experiment. Therefore, the reliability of the numerical results can be ensured by comparing the records
from the numerical wave gauge and the gauge in the experiment. The results of the three test cases in which
Fr=0.8, 1.0 and 1.1, respectively, are illustrated in Fig. 2. The peak of the main wave is placed at t′ = 0 in the
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Figure 3: The variation of the non-dimensional amplitude A/h of the main upstream wave with the Froude
number Fr. The water depth is h = 0.15 m. The Froude number Fr is set as 0.7, 0.8, 0.9, 0.95, 1.0, 1.05 and
1.1, respectively. The blue square represents the numerical results computed by HOS (M = 3). The black circle
denotes the experimental records.

plots. In each of the three test cases, the records from the numerical wave gauge correspond reasonably well
to the experimental data, which gives confidence in the accuracy of the HOS model. Moreover, the decrease of
the amplitude of the small waves propagating behind the main wave is more significant in the test case with
Fr = 0.8 than that in the test cases with Fr = 1.0 and 1.1. The mean level of the upstream waves increase
with Fr.

Next, the water depth h is set as 0.15 m. The upstream waves in the test cases in which Fr varies from 0.7
to 1.1 are investigated. The amplitude of the main wave recorded by the gauge on the centerline of the channel
is made non-dimensional with respect to the water depth, i.e. A/h. The variation of A/h with Fr is illustrated
in Fig. 3. The numerical results compare well with the experimental records. The amplitude of the main wave
increases with the Froude number; however, the increasing trend is suppressed for Fr ≥ 1. In the supercritical
conditions, the amplitude of the main wave is approximately 5-6 times the water depth.

4 Conclusion

A high-order spectral (HOS) model is adopted to simulate the evolution of upstream waves generated by a ship
traveling at near-critical speeds (Fr ∼ 1). The traveling ship is modeled by a moving pressure distribution with
dynamic correction. Some experiments with different Froude numbers Fr and water depths h in Ertekin et al.
(1984) are chosen for the model validation. Because of the dynamic correction strategy of the ship pressure, the
surface elevation in the ship region obtained using HOS (M = 3) corresponds well to the ship form. The forms
of upstream waves computed by HOS (M = 3) are comparable to those recorded in the experiments, which
gives confidence in the accuracy of the present numerical model.

References
Dommermuth, D. G. & Yue, D. K. P. 1987 A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech.

184, 267–288.
Ertekin, R. C., Webster, W. C. & Wehausen, J. V. 1984 Ship-generated solitons. In Proc. 15th Symp. Nav. Hydrodyn. Hamburg.
Ertekin, R. C., Webster, W. C. & Wehausen, J. V. 1986 Waves caused by a moving disturbance in a shallow channel of finite

width. J. Fluid Mech. 169, 275–292.
Grue, J. 2022 On the generation process of upstream waves by a pressure distribution at critical speed. In 37th International

Workshop on Water Waves and Floating Bodies, Giardini Naxos.
Li, Y. & Sclavounos, P. D. 2002 Three-dimensional nonlinear solitary waves in shallow water generated by an advancing distur-

bance. J. Fluid Mech. 470 (1), 383–410.
Lindberg, O., Glimberg, S. L., Bingham, H. B., Engsig-Karup, A. P. & Schjeldahl, P. J. 2013 Towards real time simulation

of ship-ship interaction - part II: Double body flow linearization and GPU implementation. In 28th International Workshop on
Water Waves and Floating Bodies, Marseille, France.

Shi, F., Malej, M., Smith, J. M. & Kirby, J. T. 2018 Breaking of ship bores in a Boussinesq-type ship-wake model. Coastal Eng.
132, 1–12.

West, B., Brueckner, K., Janda, R. S., Milder, D. M. & Milton, R. L. 1987 A new numerical method for surface hydrody-
namics. J. Geophys. Res. 92, 11803–11824.

Wu, T. Y. 1987 Generation of upstream advancing solitons by moving disturbances. J. Fluid Mech. 184 (1), 75–99.
Wu, T. Y. & Wu, D. M. 1982 Three-dimensional nonlinear long waves due to moving surface pressure. In Proc. 14th Symp. Nav.

Hydrodyn. Ann Arbor, Michigan, USA.
Xiao, W. 2013 Study of directional ocean wavefield evolution and rogue wave occurrence using large-scale phase-resolved nonlinear

simulations. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.


