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Highlights

e A new High-Level Green-Naghdi (HLGN) model is derived to describe large-amplitude internal solitary
waves for deep waters.

e Comparison between the present HLGN model and traditional HLGN model on wave profile and velocity
field shows that the present HLGN model is more computationally efficient for large-amplitude internal
solitary waves in deep waters.

1 Introduction

Internal solitary waves have been observed frequently in density stratified lakes and oceans. When the pycnocline
depth is relatively small, the stratified ocean can be approximated as a two-layer fluid system. Meanwhile, the depth
ratios of the upper- and lower-fluid depths A2/h1 (where A1 and k> are the depths of the lower- and upper-fluid layers,
respectively) in different ocean areas are quite different, which can even reach the ratio of 1:50, see e.g. Boyer et al.
(2013).

For the study of large-amplitude internal solitary waves in shallow waters when 42/ = O(1), the model derived by
Miyata (1985) and Choi & Camassa (1996, 1999) (MCC model, hereafter) is widely used. Recently, Choi (2022)
derived a second-order model to include the next-order correction to the MCC model. Good agreement was found
between the results provided by the second-order model derived by Choi (2022) and Euler’s solutions. Nevertheless,
due to the long-wave assumption, the MCC model cannot be applied to solve internal solitary wave problem in deep
waters when A2/h; <<1.

For the study of large-amplitude internal solitary waves in deep waters, Choi & Camassa (1999) applied the linear
theory to describe the lower-layer velocity field and developed an internal-wave model. Later, Debsarma et al. (2010)
improved the dispersion property of this model. However, the results provided by the two models showed some
differences with Euler’s solutions (Debsarma et al., 2010). Zhao et al. (2016, 2020) developed the two-layer High-Level
Green—Naghdi model for the large-amplitude internal solitary waves of finite depth (traditional HLGN model, hereafter).
In this model, the variations of the horizontal and vertical velocities along the vertical direction are approximated by a
series of polynomials. By comparing with the experimental data provided by Grue et al. (1999) and Michallet and
Bathelemy (1998) and Euler’s solutions, the traditional HLGN model was shown to describe accurately the large-
amplitude internal solitary waves in both shallow and deep waters.

However, when applying the traditional HLGN model in deeper waters, e.g., from hx/h; = 1/24 to 1/99, much
higher-order polynomial terms are required to describe the velocity field of the lower-fluid layer accurately. In such
cases, the number of unknowns increases and this affects the computational efficiency. Here, we are motivated to
develop a new HLGN model where the exponential terms, instead of polynomials, are adopted to describe the vertical
variation of velocity field of the lower-fluid layer.

This paper is organized as follows. The present HLGN model is described in Section 2. The comparisons between
the present HLGN model and traditional HLGN model are presented and discussed in Section 3. Conclusions are
reached in Section 4.

2 New internal wave model

A two-layer fluid system, which consists of two incompressible, immiscible and inviscid fluids, is considered. The
origin of the Cartesian coordinate system is set at the undisturbed interface between the two-fluid layers. The mass
densities of the upper and lower layers are p> and p1, respectively. The upper-fluid layer is of finite depth and the lower-
fluid layer is of infinite depth. The top surface of the upper-fluid layer and the interface between the two-fluid layers are
written as z = h and z = 7 (x, ?), respectively. The problem is set to be two dimensional. Sketch of this physical
problem is shown in Fig. 1.
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Figure 1 Sketch of a two-layer fluid system of infinite depth where the free surface is assumed to be a rigid lid

For each-fluid layer, the conservation equations of mass and momentum can be written as
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where u and w are the horizontal- and vertical-velocity components, respectively, p is the pressure and g is gravitational
acceleration.
The kinematic boundary conditions are written as
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where the superscripts U and L represent the variables related to the upper- and lower-fluid layer, respectively.
The dynamic boundary condition at the interface between the two-fluid layers is written as

pl=p" z=nx0) “4)
where pY is the pressure at the lower surface of the upper-fluid layer and p" is the pressure at the upper surface of the

lower-fluid layer.

In the traditional HLGN model, as shown in Zhao et al. (2016), the variations of the horizontal and vertical
velocities along the vertical direction are approximated by a series of polynomials for each layer. In the present HLGN
model developed in this paper, the variations of the horizontal and vertical velocities along the vertical direction are still
approximated by a series of polynomials for the upper-fluid layer, while the variations of the horizontal and vertical

velocities along the vertical direction of the lower-fluid layer are approximated by a series of exponential terms as
KY-1 KV
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where KUY and K* are the levels of the HLGN model that are applied to the upper- and lower-fluid layers, respectively.
ko= 2n/2 is the characteristic wavenumber and Z is the wavelength. In this paper, 1 is selected by use of the MCC model.

The present HLGN model can be obtained by substituting Eq. (5) into Eqs. (1)-(4). The numerical algorithm for
the travelling solutions is similar to that presented in Zhao et al. (2016).
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3 Numerical results

In this section, we study a large-amplitude internal solitary wave in deep waters by using the present HLGN model
and the traditional HLGN model. The parameters are as follows. Mass densities of the upper- and lower-fluid layers are
p2 = 780kg/m> and p; = 1000kg/m3. Undisturbed depth of the upper-fluid layer and lower-fluid layer is 1m and 99m,
respectively. The amplitude of the depression internal solitary wave is @ =—1.7955m.

3.1 Convergence analysis of the present HLGN model

In this subsection, we test the convergence of the present HLGN model. The wave profiles and the horizontal
velocity along the fluid column at the maximal displacement obtained by the present HLGN model with different levels
are shown in Fig. 2.
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Figure 2 The convergence analysis of the present HLGN model

From Fig. 2, we observe that the results of the present HLGN-P3E5 model (KV = 3 and K" = 5 in Eq. (5)) agree
well with the results of the present HLGN-P3E7 model. Thus, the results of present HLGN-P3E5 model are assumed to
be the converged results of the present HLGN model.

Similarly, for the traditional HLGN model, we have also compared the results with different levels. We found that
the results of the traditional HLGN-P3P8 model are the converged results of the traditional HLGN model. This
indicates that the convergence is achieved at a lower level for the present HLGN model compared with the traditional
HLGN model.

3.2 Comparisons between the present HLGN model and the traditional HLGN model

The comparisons between the results of the present HLGN model and the traditional HLGN model are shown in
Fig. 3.
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Figure 3 Comparison between the results of the present HLGN model and the traditional HLGN model
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From Fig. 3, We observe that the results of the two models on the wave profile and velocity field show good
agreement. However, it should be noted that the present HLGN model is more computationally effective because the
number of unknowns is less than in the traditional HLGN model.

Next, we compared the CPU time of the present HLGN-P3E5 model and the traditional HLGN-P3P8 model in
Table 1. In this paper, the number of calculated discrete points is 200 and the Newton-Raphson method is applied for
solving the nonlinear equations. The numerical calculations are performed by use of Mathematica and the calculations
were done on a laptop with an Intel (R) Xeon (r) W-11855M CPU@3.20GHz and 32GB of memory.

Table 1 CPU time of the present HLGN-P3ES model and the traditional HLGN-P3P8 model

Present HLGN-P3ES5 model Traditional HLGN-P3P8 model

CPU time 1.5 minutes 5 minutes

As shown in Table 1, under the same calculation conditions, the present HLGN model requires less CPU time,
which verifies that the present HLGN model is more computationally efficient than the traditional HLGN model.

More information on the present HLGN model and the comparisons between the present HLGN model and other
strongly nonlinear internal-wave models for the deep waters will be presented at the workshop.

4 Conclusions

In this paper, we develop a new HLGN model to describe the large-amplitude internal solitary waves in deep
waters. The polynomials are applied to describe the variations of the horizontal and vertical velocities along the vertical
direction of the upper-fluid layer of finite depth while the exponential terms are applied to describe the variations of the
horizontal and vertical velocities along the vertical direction of the lower-fluid layer of infinite depth in this model. By
comparing the results of the present HLGN model and the traditional HLGN model for the case of hx/h1 = 1/99, the
calculated wave profiles and velocity fields show good agreement. The CPU time for the traditional HLGN-P3P8 model
is about 5 minutes, while the CPU time for the present HLGN-P3ES model is about 1.5 minutes. The present model is
thus more efficient.
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