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HIGHLIGHTS: In this work, we investigate the nonlinear interaction between the flow over a 
semi-circular obstruction on the channel bottom and the broken ice covering the liquid. We provide 
evidence that the length of the progressive wave increases with the ice thickness; a steady flow 
may exist for larger obstruction heights when the ice thickness increases.   
 
INTRODUCTION 
An ocean region between open sea and dense drift ice is subjected to fragmentation due to storms 
and waves coming from open waters. Fragmented ice is mobile, affects ice dynamics, promotes 
overall sea ice melting, and allows waves to propagate in the ice-covered oceans. Although the 
region of dense ice has been reduced over the last 40 years, the area of MIZ is not decreased as it 
follows from satellite observations [1]. This can be explained by the fact that ocean waves coming 
from open waters penetrate into the ice field and break the ice at the same distance, which is mostly 
governed by the height of the coming waves and the process of its attenuation [2,3]. Paper [4] 
presents a comprehensive review of mathematical models of ice/liquid interaction in MIZ. They 
can be divided into two types: the first is the continuum mat models [5] Peters (1950) where the 
mat is assumed to have certain rheological properties describing the marginal ice zone; and the 
second is that dealing with a solitary flexible ice floe, followed by interactions of many such floes 
[6].  Most of the mathematic models mentioned above are based on a linear velocity potential 
theory.  

In this paper, we study the nonlinear progressive wave generated by an obstruction on the 
bottom of a channel covered by broken ice. We apply the integral hodograph method for solving 
the two-dimensional nonlinear problem of steady flow over an obstruction on the channel bottom 
coupled with the mass loading model of the broken ice. The problem is reduced to a system of 
integral equations, which is solved using the collocation method. The coupling of the broken ice 
mat and the liquid motion is based on the condition that the ice mat moves along the ice/liquid 
interface and its acceleration is caused by a force acting from the liquid. Numerical results are 
presented for a semicircular obstruction, for both the subcritical and the supercritical regime. The 
effects of wave phase speed (Froude number) and ice thickness are studied.  

THEORETICAL ANALYSIS 
We consider the steady, two-dimensional potential flow of an inviscid, incompressible liquid in a 
channel with an arbitrary bottom shape covered by a broken ice mat. Far upstream and downstream, 
the flow is uniform, with constant velocity U and fixed depth H. The liquid is subject to the 
downward acceleration of gravity g, and the thickness of the ice mat is h. A Cartesian coordinate 
system 𝑋𝑋𝑋𝑋 is defined with the origin at the bottom and the X-axis along the velocity direction of 
the incoming flow with a constant velocity U. The problem is nondimensionalized relative to the 
velocity U and depth H. The velocity potential φ and the stream function ψ are normalized to the 
product UH. The channel bottom is taken to be the ψ = 0 streamline, so that the free surface is ψ = 
1. The shape of the bottom is defined by a function 𝑋𝑋𝑏𝑏(𝑋𝑋�), or the angle 𝛽𝛽(𝑆𝑆) = 𝑑𝑑𝑋𝑋𝑏𝑏/𝑑𝑑𝑋𝑋, which is 



the slope to the 𝑋𝑋 −axis. The ice/liquid interface is defined by a function 𝑋𝑋(𝑋𝑋). The obstruction 
may generate waves extending to downstream infinity. In order to satisfy the radiation condition, 
we introduce damping regions 21TT  downstream, where a term providing wave damping is added 
in the dynamic boundary condition. The similar problems based on the linear theory were studied 
by Shishmarev et al. [7] for a body moving under continuous ice at a constant speed, Xue er al. [8] 
for a load moving along a sheet with a lead, and Zavyalova et al. [9] for a load moving along a channel 
covered with broken ice. 

 
Fig.1 Definition sketch: a) the physical plane, and b) the parameter plane, or ζ-plane. 

 
Mass-loading model. The ice moving along the interface experiences a vertical acceleration 
caused by the pressure difference on the upper and lower sides of the ice mat 
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= 𝑈𝑈, although 
the speed of the liquid on the interface, 𝑉𝑉, determined from the Bernoulli equation may differ from 
𝑈𝑈. In dimensionless form the Bernoulli equation can be written as follows 
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where the Froude number 𝐹𝐹 = 𝑈𝑈
�𝑔𝑔𝑔𝑔

 and 𝜌𝜌 is the liquid density. 

The dispersion equation for the mass-loading model derived using a linear theory [3] is 
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where 𝜔𝜔 is the wave frequency, and 𝑘𝑘 is the wave number. The wave is steady relative to the obstruction; 
therefore, 𝑈𝑈 = 𝜆𝜆
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where 𝜔𝜔𝑏𝑏
2 = 𝜌𝜌𝑔𝑔

𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖ℎ
 is the natural frequency of an ice float of thickness ℎ. The wave number versus 

the Froude number for various ice thicknesses is shown in figure 2. 



Governing expressions. We will derive the complex potential of the flow, 𝑤𝑤(𝑧𝑧) = 𝜙𝜙(𝑥𝑥,𝑦𝑦) +
𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦), with z= 𝑥𝑥 + 𝑖𝑖𝑦𝑦. For a steady flow, the kinematic conditions on the body surface and the 
interface mean that the stream function is constant, or 𝑖𝑖(𝑥𝑥,𝑦𝑦(𝑥𝑥)) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, as they both are 
streamlines. We introduce the first quadrant as an auxiliary parameter plane, or 𝜁𝜁 − plane, and 
determine two functions, which are the complex potential, 𝑤𝑤(𝜁𝜁) , and the function 𝜔𝜔(𝜁𝜁) =
− ln 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑖𝑖𝑖𝑖. Then, the flow region can be obtained in parameter form as follows: 
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where )(ζz  is the mapping function. 
The region of the complex potential corresponding to the flow region in the physical plane 

is the infinite strip −∞<ϕ<∞ of unit width, i.e., on the bottom surface 𝑂𝑂′𝐷𝐷′,  𝑖𝑖�𝑥𝑥,𝑦𝑦𝑏𝑏(𝑥𝑥)� = 0 and 
at the interface 𝑂𝑂𝐷𝐷, 𝑖𝑖�𝑥𝑥,𝑦𝑦(𝑥𝑥)� = 𝑄𝑄

𝑈𝑈𝑔𝑔
= 1. Due to the simplicity of the region 𝑤𝑤, we can find the 

complex potential by using the conformal mapping technique, 
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      The boundary conditions for the complex velocity function, 𝑑𝑑𝑤𝑤/𝑑𝑑𝑧𝑧, can be written as follows: 
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where 𝛽𝛽𝑏𝑏(𝜉𝜉) is the slope of the bottom surface, which is a known function of the coordinate s, 
𝛽𝛽(𝑐𝑐), on the real axis, and 𝑣𝑣 = 𝑣𝑣(𝜂𝜂) is the magnitude of the velocity at the interface 𝑂𝑂𝐷𝐷. The 
following integral formula gives the solution of the mixed boundary-value problem (8) – (9) 
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where 𝑣𝑣0 = 𝑣𝑣(0) and 𝛽𝛽𝑏𝑏0 = 𝛽𝛽𝑏𝑏(0)=0 are the velocity magnitude and angle at upstream infinity 
(point O). The function 𝛽𝛽𝑏𝑏(𝜉𝜉) and 𝑣𝑣 = 𝑣𝑣(𝜂𝜂) have to be determined from the boundary conditions 
on the bottom of the channel and at the ice/liquid interface.  
 
RESULTS 
For verification purposes we computed subcritical free surface flow, F = 0.5, for a semi-circular 
obstruction of radius 𝑎𝑎 = 0.2 on the bottom of the channel. The results for ℎ = 0 (the free surface) 
are compared with those obtained by Forbes & Schwartz (FS) [10] (see figure 3, ℎ = 0). The 
agreement is quite good, except for the end wave in FS, which is the effect of an abrupt calculation 
region. In our case the calculation region is much longer, and the wave gradually decreases 
downstream within a damping zone of length 4λ (beyond the region shown in Fig.2). The shape of 
the free surface for ℎ = 0 and radius 𝑎𝑎 = 0.2 exhibits a sharp crest and an extended trough, which 
corresponds to the limit configuration; for larger obstruction radii a steady flow may not exist.   

The wave length increases as the thickness of the broken ice increases, which can be seen 
in Fig.2 for ℎ/𝑘𝑘 = 0.2 and 0.5. This is consistent with the smaller wave number obtained from the 
dispersion equation in Fig.2. For larger ice thickness, the shape of the interface approaches a 



sinusoidal curve as in the case of obstructions of a smaller radius. This suggests that a steady flow 
with an ice sheet may exist for a larger obstruction radius. From Fig.3 it can be seen that the 
amplitude of the interface depends almost not at all on the ice thickness.  

 

Fig.2. Wave number versus Froude number for 
various ice thicknesses 

Fig.3. Interface shape for various ice thicknesses: 
the solid squares correspond to Forbes & 

Schwartz for the free surface flow with a semi-
circular obstruction, r=0.2.   

ACKNOWLEDGMENT 
YS would like to thank the Isaac Newton Institute and the London Mathematical Society for the financial 
support within the Solidarity Satellite Programme, and the School of Mathematical Sciences UEA as a host 
organization. 
BN would like to acknowledge the support from the National Natural Science Foundation of China (Nos. 
52192690, 52192693, 51979051 and 51979056). 
 
REFERENCES 

1. Boutin, G., Williams, T., Rampal, P., Olason, E. and Lique, C. 2021 Wave–sea-ice interactions in 
a brittle rheological framework. The Cryosphere, 15, 431–457. 

2. Langhorne, P. J., Squire, V. A., Fox, C., and Haskell, T. G. 1998 Breakup of sea ice by ocean 
waves, Ann. Glaciol., 27, 438–442.  

3. He, K., Ni, B.-Y., Xu, X., Wei, H., Xue, Y. 2022 Numerical Simulation on  the Breakup of an Ice 
Sheet Induced by Regular Incident Waves, Applied Ocean Research, 120：103204. 

4. Squire, V.A. 2007 Of ocean waves and sea-ice revisited, Cold Reg. Sci. Tech., 49(2) 110-133 
5. Peters, A.S. 1950 The effect of a floating mat on water waves. Communications on Pure and 

Applied Mathematics 3, 319–354. 
6. Kagemoto, H., Yue, D.K.P., 1986. Interactions among multiple three-dimensional bodies in water 

waves: an exact algebraic method. J. Fluid Mech. 166, 189–209. 
7. Shishmarev, K., Khabakhpasheva, T., & Korobkin, A. 2019. Ice response to an underwater body 

moving in a frozen channel. Applied Ocean Research, 91, 101877. 
8. Xue, Y. Z. Zeng, L.D., Ni, B.-Y., Korobkin, A.A., Khabakhpasheva, T. 2021 Hydroelastic 

response of an ice sheet with a lead to a moving load, Physics of Fluids, 33, 037109. 
9. Zavyalova, K.N., Shishmarev, K.A. and Khabakhpasheva, T.I. 2020. Deflection of broken ice 

caused by an external load moving along a channel.  J. of Physics: Conf. Ser. 1666 (1), 012018. 
10. Forbes, L. K.  and Schwartz, L. W. Free-surface flow over a semi-circular obstruction. J. Fluid 

Mech. 114: 299-314, 1982. 


	THEORETICAL ANALYSIS

