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HIGHLIGHTS 

• An analytical scheme is developed for wave-finite floating plate interaction in a channel.  

• The expansion of velocity potential for fluid beneath the plate is properly constructed for matching.  

• Various edge types and their combinations can be easily implemented. 

 

1 INTRODUCTION  
The interaction of water waves with floating bodies in a channel or long tank is a significant hydrodynamic 

problem with considerable applications such as model testing in towing and wave tanks, the safety of ship 

navigating in channels, renewable energy harvesting, and modelling an icy water environment in a 

tank/flume (e.g., [1], [2]). The present work investigates the interaction between surface waves with non-

rigid bodies by considering a finite plate or ice cover in a channel. A finite rectangular plate is floating on 

the water in an infinite long channel of a rectangular section, with two parallel edges constrained with 

channel banks, while the other two parallel edges are in contact with the open water. An analytical scheme 

is developed to solve the coupled problem of flow motion and plate vibration, which enables us to consider 

the effect of various types of edge conditions, such as the commonly used ones, including clamped, free, 

simply supported, and elastically supported, and their combinations. 

 

2 MATHEMATICAL MODELLING AND SOLUTION PROCEDURE  
A Cartesian coordinate system O-xyz is established with the origin located in the centre of the undisturbed 

plate cover. The x- and y-axes are along the longitudinal and transverse directions of the channel, 

respectively, while its z-axis is pointing upwards. The water depth is denoted as 𝐻, and the width of the 

channel is 2𝑏. The width and length of the rectangular plate are 2𝑏 and 2𝑙, respectively. The velocity 

potential is applied to the fluid flow and the Kirchhoff-Love plate theory to the elastic plate vibration. For 

the former, it assumes that fluids are incompressible and inviscid, and their motion is irrotational. When 

the incoming wave of amplitude 𝐴0 is sinusoidal with time, the velocity potential and the deflection of the 

plate may be respectively written as Φ(𝑥, 𝑦, 𝑧, 𝑡) = Re{𝐴0𝜙(𝑥, 𝑦, 𝑧) 𝑒i𝜔𝑡}  and 𝑊(𝑥, 𝑦, 𝑡) =

Re{𝐴0𝑤(𝑥, 𝑦) 𝑒i𝜔𝑡}, and the problem can then be solved in the frequency domain. 

 

The velocity potential 𝜙(𝑥, 𝑦, 𝑧) satisfies the Laplace equation throughout the fluid domain as 

𝜙𝑥𝑥 + 𝜙𝑦𝑦 + 𝜙𝑧𝑧 = 0.                                                                    (1) 

The deflection 𝑤(𝑥, 𝑦) of the plate is governed by the dynamic equation 

𝐿∇4𝑤 − 𝜔2𝜌𝑒ℎ 𝑤 = 𝑝,                                                                    (2) 

where 𝐿 = 𝐸ℎ3/[12(1 − 𝜈2)] is the flexural rigidity, with ℎ, 𝜌𝑒 and 𝜈 being the thickness, density, and 

Poisson’s ratio of the plate, respectively. 𝑚𝑒 = 𝜌𝑒ℎ then refers to the mass per unit area of the plate. The 

pressure term on the right-hand side of (2) can be given as 

𝑝 = −𝜌𝑔𝑤 − i𝜌𝜔 𝜙|𝑧=0.                                                                 (3) 

At the interface of fluid and the plate, the linearized kinematic condition can be given as 

i𝜔𝑤 = 𝜙𝑧|𝑧=0.             |𝑥| < 𝑙                                                             (4) 

Besides, the linearized free surface boundary condition can be given as 

𝜙𝑧 − 𝛾𝜙 = 0|𝑧=0,          |𝑥| > 𝑙                                                            (5) 
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where 𝛾 = 𝜔2/𝑔  and 𝑔 is the acceleration due to gravity. The surfaces at the bottom and channel walls are 

assumed to be rigid, and the impermeable boundary condition yields 

𝜙𝑦|
𝑦=±𝑏

= 𝜙𝑧|𝑧=−𝐻 = 0.                                                                   (6) 

At far field 𝑥 = ±∞ , the radiation condition ensures that the waves are outgoing. In addition, edge 

conditions are very important for plate problems. Three common conditions for a curved shape can be 

written as [3] 

𝑤 = 0,           𝑤𝑛 = 0;                                                                      (7) 

for the clamped edge,  

∇2𝑤 = (1 − 𝜈) [
𝜕2

𝜕𝑠2 +
1
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𝜕

𝜕𝑛
] 𝑤,     
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𝜕𝑛
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𝜕

𝜕𝑠
[

𝜕2
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−

1

ℛ

𝜕

𝜕𝑠
] 𝑤;                         (8)  

for the free edge (e.g., Eqs. (A1) and (A2) in [4]), and  

𝑤 = 0,       ∇2𝑤 = (1 − 𝜈) [
𝜕2

𝜕𝑠2 +
1

ℛ

𝜕

𝜕𝑛
] 𝑤.                                              (9)  

for the simply supported edge. 𝒏 and 𝒔 in the above equations are the normal and circumferential unit 

vectors of the edge, and ℛ is the radius of curvature. 

 

The fluid domain can be divided into three sub-domains, namely, the upstream open water domain (Ω1 : −
∞ < 𝑥 < −𝑙, −𝐻 ≤ 𝑧 ≤ 0), plate-covered water domain (Ω2: −𝑙 ≤ 𝑥 ≤ 𝑙, −𝐻 ≤ 𝑧 ≤ 0) and downstream 

open water domain (Ω3: 𝑙 < 𝑥 < +∞, −𝐻 ≤ 𝑧 ≤ 0). In Ω1, the corresponding total velocity potential can 

be written as the sum of incident wave potential and diffracted wave potential, or 𝜙1 = 𝜙𝐼 + 𝜙𝑑
 , with 

𝜙𝐼(𝑥, 𝑦, 𝑧) = −
𝑔

i𝜔
×

cosh 𝑘0(𝑧 + 𝐻)

cosh 𝑘0𝐻
× 𝑒−i𝑘0𝑥,                                             (10) 

and 

𝜙𝑑
 = ∑ ∑ 𝑎𝑛𝑚

cosh 𝑘𝑚(𝑧 + 𝐻)

cosh 𝑘𝑚𝐻
cos 𝛽𝑛(𝑦 + 𝑏) 𝑒i𝜏𝑛𝑚𝑥

∞

𝑛=0

∞

𝑚=0

,                                 (11) 

where 𝛽𝑛 = 𝑛𝜋/2𝑏, 𝑘𝑚 are solutions of the dispersion equation 𝑘 tanh 𝑘𝐻 = 𝛾, including both real one 𝑘0 

and imaginary ones 𝑘𝑚, 𝑚 > 0, and 𝜏𝑛𝑚
2 = 𝑘𝑚

2 − 𝛽𝑛
2 is obtained from the Laplace equation. It is noted that 

for 𝑘0
2 > 𝛽𝑛

2 , 𝜏𝑛0  is a real number which should be taken as positive to ensure the travelling wave is 

outgoing; while for 𝑘0
2 < 𝛽𝑛

2 , or 𝑚 > 0, 𝜏𝑛𝑚  is the pure imaginary number which should be taken as 

negative to ensure that it is an evanescent wave. Similarly, in Ω3, the velocity potential can be written as 

𝜙3 = ∑ ∑ 𝑐𝑛𝑚

cosh 𝑘𝑚(𝑧 + 𝐻)

cosh 𝑘𝑚𝐻
cos 𝛽𝑛(𝑦 + 𝑏) 𝑒−i𝜏𝑛𝑚𝑥

∞

𝑛=0

∞

𝑚=0

.                                 (12) 

In the plate-covered water domain Ω2, the velocity potential can be expanded as 

𝜙2 = 𝜒 + 𝜑 + 𝜓.                                                                           (13) 

We have 

𝜒 = 𝑃00 +
𝑄00

𝑙
𝑥 + 𝒫00[𝑥2 − (𝑧 + 𝐻)2],                                                      (14) 

as a particular solution obtained from taking the average of flux out on each boundary and treating it 

separately, and 𝒫00 is related to the average on 𝑧 = 0. Besides, 𝜑 can be expressed as 

𝜑 = ∑ ∑ 𝜀𝑛𝑗𝒫𝑛𝑗 cos 𝛼𝑗(𝑥 + 𝑙) cos 𝛽𝑛(𝑦 + 𝑏)

∞

𝑛=0

∞

𝑗=0

cosh 𝓀𝑛𝑗(𝑧 + 𝐻)

cosh 𝓀𝑛𝑗𝐻
,                          (15) 



 
 

based on the mode expansions horizontally, with 𝜀00 = 0 and 𝜀𝑛𝑗 = 1 otherwise, and 𝛼𝑗 =
𝑗𝜋

2𝑙
, 𝓀𝑛𝑗

2 =

𝛼𝑗
2 + 𝛽𝑛

2. In addition, based on the vertical mode expansion, 𝜓 can be expressed as 

𝜓 = ∑ ∑ 𝜀𝑛𝑚 [
𝑃𝑛𝑚 cosh 𝜆𝑛𝑚(𝑥 + 𝑙) + 𝑄𝑛𝑚 cosh 𝜆𝑛𝑚(𝑥 − 𝑙)

cosh 2𝜆𝑛𝑚𝑙
] cos 𝛽𝑛(𝑦 + 𝑏) cos 𝐾𝑚(𝑧 + 𝐻)

∞
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,   (16) 

where 𝐾𝑚 =
𝑚𝜋

𝐻
 and 𝜆𝑛𝑚

2 = 𝛽𝑛
2 + 𝐾𝑚

2  from the Laplace equation. 

 

The unknown coefficients in Eqs. (11) to (16) can be obtained by establishing and solving the system of 

linear equations obtained from the dynamic and kinematic boundary conditions, the matching conditions at 

the interfaces of neighbouring domains, and the plate edge conditions. The procedures are introduced 

briefly below: As ∂𝜑/𝜕𝑥 = 0 at 𝑥 = ∓𝑙, thus we have 𝜕(𝜓 + 𝜒)/𝜕𝑥 = 𝜕𝜙1/𝜕𝑥 at 𝑥 = −𝑙 and 𝜕(𝜓 + 𝜒)/
𝜕𝑥 = 𝜕𝜙3/𝜕𝑥 at 𝑥 = 𝑙. Based on the orthogonality of the cosine functions for 𝑦 and cosh 𝑘𝑚(𝑧 + 𝐻) for 

𝑧, we can get the expressions of 𝑎𝑛𝑚 and 𝑐𝑛𝑚 in (11) and (12) as unknown coefficients in (14) and (16). 

Then, from the continuity condition of the potentials at the interfaces of different fluid domains, we can 

have 𝜙2 = 𝜙1  at 𝑥 = −𝑙  and 𝜙2 = 𝜙3  at 𝑥 = 𝑙 . Multiplying both sides of these two equations with 

cos 𝛽𝑛(𝑦 + 𝑏) cosh 𝑘𝑚(𝑧 + 𝐻) / cosh 𝑘𝑚𝐻  and integrating with respect to 𝑦  from −𝑏  to 𝑏  and 𝑧  from 

−𝐻 to 0, respectively; using the orthogonality of these functions and further using the expressions of 𝑎𝑛𝑚 

and 𝑐𝑛𝑚, we can eliminate 𝑎𝑛𝑚 and 𝑐𝑛𝑚, and obtain the linear equations for 𝒫𝑛𝑗, 𝑃𝑛𝑚 and 𝑄𝑛𝑚 for 𝑛, 𝑚 =

0,1,2, …. In addition, we can further impose the conditions on the interface of the plate cover and the upper 

surface of the fluid domain. We may further expand the deflection of the rectangular plate as the summation 

of a double cosine series and four additional terms in each direction [5] 

𝑤 = ∑ ∑ 𝐶𝑛𝑗 cos 𝛼𝑗(𝑥 + 𝑙) cos 𝛽𝑛(𝑦 + 𝑏)
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].                                                                                          (17) 

Based on (17), ∇4𝑤 can also be expanded as double cosine series. When doing this, derivatives should be 

applied to 𝑥𝑖  and 𝑦𝑖  first before they are expanded into the cosine series to ensure convergence [5]. 

Substituting (13), (17) and the expansion of ∇4𝑤  into (2) and (4), and using the orthogonality of 

trigonometric functions, linear equations can be obtained. To close the problem, the conditions at the four 

edges of the plate, e.g., (7)-(9), are also imposed on 𝑤 in (17). With all the above, a linear system of 

equations with the unknowns 𝐶𝑛𝑗 , 𝒫𝑛𝑗 , 𝑃𝑛𝑚, 𝑄𝑛𝑚, 𝒄𝒋 = [𝑐𝑗
(1)

, 𝑐𝑗
(2)

, 𝑐𝑗
(3)

, 𝑐𝑗
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]  and 𝒅𝒏 = [𝑑𝑛
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, 𝑑𝑛
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, 𝑑𝑛
(3)

, 𝑑𝑛
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]. 

For practical computation, infinite series needs to be truncated to finite terms, e.g., 𝑁 for 𝑛, 𝐽 for 𝑗, and 𝑀 

for 𝑚. This gives 

𝑨 ⋅ 𝒙 = 𝑩,                                                                         (18) 

where 𝒙 is a column vector containing 2𝑁𝑀 + 4(𝑁 + 𝐽) + 2𝑁𝐽 unknowns, 𝑨 is a square matrix of size 

2𝑁𝑀 + 4(𝑁 + 𝐽) + 2𝑁𝐽. 𝑩 is the column vector of the same size as 𝒙, depending on the incident wave. It 

is worth noting that using the linear equations obtained from dynamic and kinematic equations, we can 

further eliminate 𝐶𝑛𝑗 and 𝒫𝑛𝑗  from 𝒙 to reduce the computation. Once unknown coefficients have been 

solved, results such as hydrodynamic loads on the plate, plate deformation, and the reflection/transmission 

coefficients can be worked out. 

 

3 RESULTS AND ANALYSIS 
In the following analysis, the two parallel edges in contact with the open water (𝑥 = ±𝑙) can be assumed 

to be free, while the edges along the channel banks (𝑦 = ±𝑏) can be set as free, clamped or simply 

supported, etc. In Fig. 1, graphs of the modulus of the total vertical force |𝑉| and the moment of 𝑦-axis 



 
 

|𝑀𝑦| versus 2𝑘0𝑙/𝜋 are displayed for different edge conditions at 𝐿 = 0.1. The results of the 2D case, 

|𝑉(2𝐷)| and |𝑀𝑦
(2𝐷)

|, are also provided for comparison. The curves of the hydrodynamic forces on the plate 

for the free-free and clamped-clamped edge cases at the channel walls are displayed in Figs 1(a) and 1(b), 

respectively. In the case of the free-free edges, there is only a slight difference between the results and those 

obtained for the 2D case, suggesting that the 3D effect may not be significant. However, when the plate 

edges are clamped to the channel walls, the 3D effect becomes more noticeable. This observation is further 

supported by the graphs depicting the modulus of plate deformation induced by incident waves at these two 

different edge types along the channel banks. In Fig. 2, the cases of 𝑘0𝑙/𝜋 = 1 and 𝐿 = 0.1 are considered, 

where the wavelength equals the plate length. Other parameters are the same as those in Fig. 1. 

 

        
                           (a)                                                                                            (b) 

Figure 1. Modulus of the total vertical force |𝑉| and the moment of the 𝑦-axis |𝑀𝑦| against 2𝑘0𝑙/𝜋 at both free and 

both clamped edge conditions along tank walls. (𝑙 = 1.5, 𝑏 = 1, 𝐻 = 1, 𝐿 = 0.1, 𝑚𝑒 = 1 × 10−3, 𝜈 = 0.3) 

 

       
Figure 2. Mudulus of the deformation of plate cover induced by the incoming wave at 𝑘0𝑙/𝜋 = 1 and 𝐿 = 0.1. 

 

4 CONCLUSIONS 
The abstract provides an efficient solution procedure for the interaction between water waves with a finite 

rectangular plate cover in a channel as a follow-up to a previous work [1] where an ice/elastic cover fully 

covers the channel. The results illustrate the importance of edge constraints to this problem, which the 

present scheme can conveniently investigate. Further results/analysis will be provided during the workshop. 
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