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1 INTRODUCTION

Proper assessments of safety and energy efficiency of marine operations require detailed information
about the acting wave system in the given situation. This is particularly true for floating structures,
such as ships, wind turbines, fish cages, etc., and applies to real-time, in-situ assessments as well
as post-operation analyses. It is possible - with an analogy to classical wave buoys - to obtain
information about the acting wave system by processing sensor measurements of wave-induced
responses (e.g., motions and structural responses) from the given floating structure. Although
research in this direction has been carried out during the past 3-4 decades, there is still relatively
little awareness in the community about the relevant possibilities considering different applications.
This note highlights the status and ongoing developments made at DTU Construct with selected
partners for estimating waves through measured ship responses. Onward, we refer to wave-estimation
methods of this type under the umbrella term the Wave Buoy Analogy (WBA). In the presentation,
we also discuss associated limitations, problems, and future applications of the WBA.

2 THEORETICAL CONCEPTS AND METHODOLOGIES

Fundamentally, the WBA relies on measuring of wave-induced ship responses; say, heave (z), roll
(ϕ), and pitch (θ). Introducing the linear time-invariant (LTI) assumption, facilitates the use of
transfer functions, leading to what will be referred to as physics-based methods with formulations in
both the frequency domain and the time domain. In contrast thereto, purely data-driven approaches
exist, relying on machine learning, and referred to as ML-based methods. Common to all WBA
methods is the characteristic of a ship as a wave filter, and the relative dimensions, notably the ratio
of length to wavelength, indicate how well the measured responses can be used for wave inference.

2.1 Physics-based methods

From a measured set of responses, corresponding response spectra Si,j(ωe,l), i, j = {z, ϕ, θ}, can be
computed under the assumption of stationary and ergodic processes. Here, ωe,l defines the encounter
frequency discretised by l = 1, 2, ..., L components. Formally, the directional wave spectrum E(ω, µ)
can be determined from the spectral equation,
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where the transfer function is Φi(ω, β), and the overline denotes the complex conjugate. The
intrinsic frequency is ω [rad/s], and β = (180 + χ − µ) [deg] is the wave encounter angle with



waves propagating from the compass direction µ while the compass heading of the ship is χ. The
straight-line brackets ⟨· · · ⟩ωe,l

, with ωe,l as index, is used to emphasise that evaluation happens
for a given frequency of encounter. Frequency-domain solutions build on different assumptions
and, typically, a distinction is made between non-parametric methods and parametric methods.
Non-parametric methods solve for the unknown wave spectrum E(ω, µ) at all discrete pairs of
(ω, µ), necessitating regularization techniques and/or iterative schemes for dealing with the highly
under-determined equation system. In the parametric methods, the directional wave spectrum is
formed by an idealized wave spectrum, e.g., Bretschneider, JONSWAP or summations of such,
overlaid with a spreading function. Thus, the minimization of Eq. (1) leads to an optimized set of
wave parameters governing the idealized wave spectrum. In the spectral equation, it is an inherent
complexity that the Doppler shift, for ships with forward speed, introduces a 1-to-3 relationship
between the encounter frequency and the intrinsic frequency for all wave encounter angles between
followings waves and beam waves. Although mathematically elementary, the Doppler shift is a
practical complication and care must be taken when it is implemented in the WBA. As indicated
by Eq. (1), several responses are used simultaneously, and the cross spectra reveal the necessary
information about the phase relationships needed to infer the (relative) direction of the waves.

Transfer functions have also been used for developing methods in the time domain, and resulting
solutions can produce the real and imaginary parts of the amplitudes of the component waves
forming the wave system. Specifically, a solution has been derived in terms of Prolate Spheroidal
Wave Functions (PSWF) for a ship without forward speed.

2.2 Machine learning-based methods

Modelling the ship motion dynamics via the governing physics necessitates several assumptions
that can be relaxed if the relation between waves and motions instead is explored and determined
entirely through data. In ML-based methods, the general relationship between waves and induced
responses of a particular ship is learned by comprehensive training with large datasets of measured
responses against available sea state information. The main advantage of ML-based methods is
that transfer functions are not needed, and all associated uncertainties are thus removed. On the
other hand, the need for high-quality sensor measurements is emphasized and so is the importance
of having accurate (”external”) sea state information at the exact spatio-temporal position of the
ship. Generally, sea state information can be obtained, for instance, through dedicated wave radar
systems or via third-generation spectral wave models, such as WaveWatch III or WAM, often
assimilated with data in re-analyses.

Many ML architectures allow, with relatively little effort through supervised regression, esti-
mation of integral wave parameters, e.g., the significant wave height, the peak period, the mean
relative wave direction, and attempts to estimate the actual (directional) wave spectrum have also
been made. As with the physics-based approaches, ML methods can be formulated in both the
time domain and in the frequency domain; stressing the importance in having the phase relation-
ships between responses, like with the physics-based methods, for obtaining reliable estimates of
the (relative) wave direction.

3 CASE STUDIES

3.1 Wave spectrum estimation

The non-parametric and parametric physics-based frequency-domain methods have the directional
wave spectrum as their output. An example is seen in Figure 1. The spectrum has been obtained



by analysis of full-scale motion data from R/V Gunnerus [1]. In this particular case, the final
output is produced by combining the non-parametric estimate [2] with the parametric estimate [3].
It can be seen that the agreement with corresponding estimates by a wave buoy (Datawell BV) is
good. In some applications, for instance related to dynamic positioning, it may be enough to have
just wave parameters (e.g., Hs and Tp) to ensure efficient working capabilities of the DP control
system, and specific developments of the WBA have been made in this direction [4, 5].
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Figure 1: Wave spectrum estimation. Left: Comparison between the WBA and a Datawell BV
wave buoy. Right: The corresponding directional spectrum produced by the WBA.

3.2 Determination of the incident wave profile

In the study of nonlinear wave-ship interaction problems, the incident wave (i.e., the surface el-
evation) must be available. The time-domain method by [6] offers estimates of the encountered
wave elevation based on short-time sequences of response measurements. An example is presented
in Figure 2, which is produced by analysis of seakeeping experiments from the model tank of the
National Maritime Research Institute in Tokyo. The plot shows estimates of the incident wave,
based on different models (”uni-modal” and ”tri-modal”), together with the true incident wave
resulting from a short-crested sea state.
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Fig. 5 Comparison of wave elevations amidships by the uni-modal and tri-modal approaches (State B). 2 
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Figure 2: Determination of the encountered incident wave. From [6].

3.3 Sea state identification using machine learning

Based on an extensive dataset of wave-induced responses from an in-service container ship, multiple
deep neural networks have been trained, and the sensitivity to sensor recordings, sample length,
and frequency discretization on estimation accuracy has been studied [7]. A selection of the main



results, in terms of estimation capabilities, is shown in Figure 3, where estimates are compared
against the ”ground truth”, here taken from a wave radar system (WaVex). The plots present
validation results obtained from an Inception (frequency-domain) model making use of response
spectra and applied in a multi-task learning setting for estimation of significant wave height (Hs),
peak period (Tp), and relative wave direction (β). In the plots, the estimates are shown on the
vertical axis.
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Fig. 15. Correlation plots of the target variables and the loss curves in the frequency domain. Note that overhat denotes the model predictions.
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with the ratio of the numbers of elements of the two input feature spaces, i.e. 1500 × 6 in the time domain and 64 × 36 in the

frequency domain, having obviously a direct impact on the trainable parameters of the model. Ultimately, it is concluded that the

spectral approach is characterized by better accuracy, robustness and computational efficiency. This finding is somewhat consistent

with other recent research on machine learning-driven sea state estimation that focuses on frameworks formulated in the frequency
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Figure 3: Each point represents the result corresponding to 25-minutes of data.. From [7].

4 PERSPECTIVES

In-situ estimates of waves can directly benefit assessments of safety and energy efficiency of the
ship encountering these waves. The WBA is a useful tool in this connection, emphasising that,
instrumentation-wise, only a few relatively inexpensive sensors are needed. It is believed that
applications of the WBA goes beyond the assessment of the operations of a single ship. A future,
more general, application could be related to met-ocean forecasting networks [8].

ML-based methods have wide and large potential but the complexity of the system (a ship
in a confused sea) being considered, makes the use of ML delicate, and generalization of results
(operational profile, different ships) must be made with extreme care. As part of the problem, the
quality of ship telemetry data is notoriously low, and a fallback framework (physics-informed ML)
seems necessary.
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