
Icebreaking Ability of a Free-rising Buoyant Sphere 

B. Y. Ni a*; H. Tan a; Yu. A. Semenov 
a
; C. X. Zhang a 

a. College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China; 
*nibaoyu@hrbeu.edu.cn 

 

HIGHLIGHTS  

⚫ It is found that the damage degree of the ice plate depends on the kinetic energy of a free-

rising buoyant sphere at the moment of collision, instead of momentum.  

⚫ Some simplified theoretical approaches are adopted to find an explicit expression of the 

optimal relative density 
op  of the sphere under different initial submergence depth. It is 

found for a non-viscous case, 
op  equals to 

3 1

2

−
 always. 

1 INTRODUCTION  

Vertical icebreaking is common in nature. For example, a bowhead whale needs to break the 

ice sheet above it for ventilation and it can break an ice sheet up to 60cm thick by buoyance [1]. 

Therefore, many scholars have studied icebreaking of a body moving in the vertical direction. Ren 

and Zhao [2] studied the process of a sphere falling from the top of an ice plate, and breaking ice 

before entering the water. Wang et al. [3] simulated the process of an underwater cylinder breaking 

ice vertically before exiting the water. Ye et al. [4] simulated submarine surfacing through the ice 

under a given constant speed by using the peridynamics method. Orlov and Bogomolov [5] 

quantitatively described the process of large impactors penetrating ice in the initial range below 

the speed of sound in air. 

It can be seen that most previous work on the collision of a body and ice along vertical 

direction either concerned the intrusion of the sphere into the thick ice, or the damage of ice under 

the body with a prescribed velocity. To our best knowledge, no research on icebreaking by a free-

rising buoyant body has been published. This is because the interaction among ice, body in free 

motion and water is very complex. On the other hand, it is interesting when the buoyant body 

breaks the ice plate most, or the optimal relative density of the body which can break the ice plate 

severest. A sphere is used as an example in the experimental and theoretical analysis. 

2. EXPERIMENTAL METHODS 

2.1 Ice Specimen Preparation 

The ice plates in this study were made by freshwater in a cryostat at -20℃. The freshwater was 

boiled in order to maximize the removal of dissolved air in the water and to avoid the presence of 

bubbles. The boiled fresh water was placed in an EPS cylindrical container without a top cover, 

which ensure the heat transfer direction is in the same way as the growth direction of the ice crystal 

in reality. When the requirements of the thickness of the ice plates were met, the ice plates were 

removed from the container and moved into a cryostat at -5℃ for 10 hours. The diameter of ice 

plates was 345 mm and the thicknesses were 6 mm, 8 mm, and 10 mm respectively. 

2.2 Experimental Setup 

Figure 1 shows the experimental setup. The experimental facility can be divided into four 

systems: 1) the sphere location and releasing system; 2) the fixing system; 3) the supporting system; 

4) the camera system. The properties of ice plate can be found in Ni et al. [6]. 

A sphere with a diameter of 112.5mm location and releasing system included a lift platform 

(in blue) and a releasing device (in yellow), as shown in Figure 1 (a) and (b). A supporter with a 



groove was used for the ice fixing system. The detail was shown in Figure 1 (c). During the 

experiment, the ice plate was first put into the groove of the supporter, and then the fixed ring was 

covered over the ice plate, as shown in the enlarged view of Figure 1 (c), and finally the fixed ring 

was fixed with the supporter by four Clamps2. The ice fixing system was fixed with the water tank 

by eight Clamps1. The supporting system consisted of a square water tank and an outside shell 

frame. The size of the glass water tank was 0.6 m×0.6 m×0.6 m. The camera system included two 

high-speed cameras and four LED lamps. Placed on the horizontal surface, Camera 1 was in charge 

of capturing the motion trajectory of the floating sphere. Meanwhile, the destruction of the ice 

plate was captured by Camera 2 which was placed on the vertical surface. 

 
(a) (b) (c) 

Figure 1. Experimental setup: (a) Supporting system and camera system. (b) Ice fixing system and sphere location 

and releasing system. (c) Cross-section diagram of ice fixing supporter and the fixation way of the ice plate. 

3. RESULTS AND DISCUSSION 

Through the experiment of the control variable method, four damage patterns were concluded 

as ‘radial cracks (RCs)’, ‘radial cracks⊕circumferential cracks (RCs⊕CCs)’, ‘debris splashing’ 

and ‘ice plate breakup’ patterns, with damage degree of ice plate rising.  

To explores the effect of dimensionless density   on ice plate damage. Spheres with different 

dimensionless densities were used to break the ice plate with dimensionless thickness of the ice 

plate h = 0.089 and the dimensionless initial submergence depth of the sphere 
0L = 2.31 constant. 

Figure 2 shows typical pictures of the damage on the ice plate caused by spheres of different 

densities, at t=0.1 s from bird’s-eye view and horizontal view, respectively. From Figure 2 (a) to 

(c), it can be seen that with the increase of the relative density of the sphere, the damage state of 

the ice plate changes from ‘debris splashing’ to ‘ice plate breakup’ patterns; while from Figure 2(c) 

to (e), the damage state of the ice plate changes from ‘ice plate breakup’ to ‘debris splashing’ and 

then to ‘RCs’ patterns. To avoid randomness in the results, at least 10 repeated experiments were 

done for each density case. The failure mode of ice plate caused by spheres with different densities 

is shown in Figure 3. Because it was difficult to ensure the properties of each ice plate same exactly 

due to limits of icebreaking technology, different failure modes may appear at the same relative 

density. However, it was still reasonable to classify the damage degree of ice plates by statistical 

data of different failure modes. 

Based on the results of previous experiments, ‘ice plate breakup’ pattern was severest in all 

the patterns. We took the probability of this pattern as a criterion and tried to link the damage 

degree of the ice plate with dimensionless kinetic energy 
ktE  and dimensionless momentum 

tM  

of the sphere. As shown in the Figure 4, the dimensionless kinetic energy of the sphere achieves 



the largest at  = 0.4, while the dimensionless momentum of the sphere achieves the largest at 

= 0.6. Compared with the probability of ice breakup pattern, when the kinetic energy of the sphere 

is the largest, the probability of the ice plate breakup peaks (91.7%). From this point, it can be 

concluded that the kinetic energy of the sphere, rather than momentum, at the moment of collision 

dominates the damage degree of the ice plate. As a result, we adopt kinetic energy of the sphere at 

the moment of collision as a criterion for the icebreaking ability of a floating light sphere driven 

by net buoyant force hereinafter.  

 
Figure 2. Destructiveness of ice plates caused by different relative densities of spheres from different views 

  

Figure 3. Probability of failure mode of ice plate 

impacted by spheres with different densities 

Figure 4. The relationship between 
ktE , 

tM  and the 

probability of the ice breakup with the relative density 
obtained in experiments. 

4. MATHEMATICAL CONCLUSION 
Driven by the buoyant force, a light sphere starts to accelerate from a resting position under 

the ice plate until it collides with the ice plate. A simplied theoretical force balance model was 

made as follows: 
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where m  is the mass of the sphere; am  is the added mass of the sphere; U  is the velocity of the 

sphere; x  is the displacement of the rising buoyant sphere; bF  is the buoyant force; 
gF  is the 

gravity force; dF  is the drag force; D is the diameter of the sphere; mC  is the added-mass 

coefficient. In this model, it was assumed that the drag coefficient dC  in the whole process was a 

constant to be determined. According to the simplified model, the relationship between 
ktE  and 

 , 
0L , dC  is obtained. When 0ktE   = , one can find 

op .
 
Figure 5 provides the change of 

op  

with 
0L  and dC  at a given mC  . It is found that 

op  depends on the viscous effect of the fluid to a 

great extent. If the viscous effect is neglected, or for a non-viscous case, 
op  equals to 
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identically. Otherwise, 
op  declines along with the decrease of dC  at a given 

0L , and rises along 

with the increase of 
0L  at a given dC , approaching to 0.5 for a very large 

0L  in the end. 

 

Figure 5. The relationship between 
op

 
and 

0L  with different dC  
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