3D depth-limited breaking waves in fully non-linear potential flow
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HIGHLIGHTS

A new method of modeling 3D depth-limited breaking waves is proposed and implemented in
a fully non-linear potential flow model based on the boundary element method. The method
is implemented in three steps: (1) identification of breaking onset using the kinematic B
criterion; (2) application of damping pressure in the dynamic free surface condition, function
of crest kinematics; and (3) a breaking termination criterion to stop this dissipation. A
validation case for a numerical experiment set-up is presented.

1 INTRODUCTION

The study of breaking waves is crucial to establish engineering wave properties in complex sea
states, which govern, among other things, wave interaction with fixed and floating structures.
Extensive research has being done on understanding the many aspects of this phenomenon
(e.g., Duncan [1], Stive [2|, Banner and Peregrine [3], Barthelemy et al. [4], Derakhti et
al. [5], Derakhti et al. [6]). Due to the computational complexity of modeling breaking waves
over large domains in Navier-Stokes models, researchers still rely on using simpler models
in which the effects of breaking waves are explicitly introduced. This was done in 2D with a
variety of advanced models and methods, e.g., by Guignard and Grilli [7], Kennedy et al. 8],
Simon et al. [9], Papoutsellis et al. [10], and Mohanlal et al. [11]. In 3D, however, numerical
techniques have mostly been simpler and limited to preventing numerical instabilities in the
model when wave breaking occurs (e.g., Pierella et al. [12], Ghadirian et al. [13]). Here, we
propose a new method for modeling 3D depth-limited breaking waves, which is an extension
of our earlier work in 2D (Mohanlal et al. [11]).

2 FULLY NON LINEAR POTENTIAL FLOW (FNPF) MODEL

The considered FNPF model assumes the fluid flow to be inviscid and irrotational such that
the flow velocity can be written as V = V¢, where ¢ is a velocity potential, such that
V2¢ = 0. We use the model of Harris et al. [14], in which, as in Grilli et al. [15], Laplace’s
equation is solved as a boundary integral equation, discretized with a higher-order BEM,

ax)otx) = [ {52060~ x) = o6 G (x —x) dr, 1)

where I' is the boundary, « is the interior solid angle at the boundary at point x;, and
G(x,x;) = 1/(47r;) is the 3D free space Green’s function (with r; = |x — x;]).

3 WAVE BREAKING MODEL
To demonstrate the breaking model, a simple 3D submerged bar (Fig. la) is considered,



with an incident solitary wave of relative height H/h = 0.7 (as in Antuono et al. [16]). Wave
breaking is modeled in three steps: (1) wave crests reaching breaking onset are identified
with the universal criterion that an evolving crest, whose ratio of horizontal particle velocity
at the crest, u, to crest velocity, ¢, exceeds a critical value, B = u/c = 0.85, will always break;
and otherwise it will not (e.g., Derakhti et al. [6]); (2) an absorbing pressure is applied to
breaking crest regions |7, 17]; (3) absorption is terminated when B,fs = 0.3, as in Mohanlal
et al. [11], who found this to be optimal for 2D wave breaking on submerged bars, based on
a few test cases.

To detect breaking crests in a general way, local maxima are first found (Fig. 1a,b), then,
the surrounding 16 BEM nodes are fitted with a bi-cubic fit (see Fig. 1b; Grilli et al. [15])
in which a wave crest line segment is calculated (Fig. 1c), defined by a length (§), mean
position (T, ¥.), and horizontal flow velocity at the surface, u = |/u3 + u7 at this mean
position, slope, and intercept. These crest segments are tracked in time by assuming that,
for a small time step, they move approximately in the local normal direction. Phase speed
along each crest segment is finally calculated as ¢ = \/(dZ./dt)? + (dy./dt))?, which yields
B = u/c. Fig. 2 shows positions and B values of detected crests, up to breaking onset.
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Figure 1: (a) Solitary wave propagating over 3D submerged bar (h = 1 m; depth near the
wavemaker); dots indicate BEM nodes. (b) Close-up top view of the free surface nodes
around the crest, with solid rectangles indicating the selected elements for further analysis.
Nodes selected around an element for crest detection are marked as stars. (c) Bi-cubic fit
on 16 nodes around selected element, with detected crest shown as black line.

The energy dissipation in breaking crests is then determined as: (1) the non-dimensional
breaking strength parameter b (defined such that wave energy dissipation rate per unit
length of the breaking crest, ¢ = bpg~'c®) is determined following Mohanlal et al. [11]; and
(2) b= 0.05 is used to calculate the instantaneous power dissipated per unit length of crest
I1,, modeled as the work over one time step of a damping pressure P, specified in the dynamic
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Figure 2: Left: Solitary wave crests (T., ¥.) at six times t* = (t — t)/+/gh, with breaking
onset at t,; color scale is B = u/c; bottom contours shown as black lines (in meter). Right:
B vs t* for all crests, up to breaking onset (B = 0.85); color scale is |7:| (m).
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Figure 3: Left: a plot of the free surface at the breaking onset time t,. Right: the damping
pressure (P,/p) applied on a section of the free surface. Note: for stability in more general
cases, this should be smoothed between breaking and non breaking regions, not shown here.

free surface condition around the breaking wave crests (Grilli et al. [17]), with Py(z,y,t) =

v(t)pn(z,y,t), where the absorbing function is v/(t) = II,0/( [ fy &2\ /T+n2+ nadxdy), ¢n is
the normal surface velocity. Fig. 3 shows computed surface and pressure at breaking onset
time tb-

4 SUMMARY

A method of modeling depth-limited breaking waves in a 3D FNPF-BEM model is demon-
strated. The approach is easily extendable to other evolving wave crests, for regular waves
or more realistic sea-states, as was done in earlier 2D work [11]. Numerical developments
are in preparation for comparisons with existing experimental data from the literature, e.g.,
the free surface elevation post-breaking, and identification of wave breaking regions.
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